DOI QR코드

DOI QR Code

A ProstateSegmentationofTRUS ImageusingSupport VectorsandSnake-likeContour

서포트 벡터와 뱀형상 윤곽선을 이용한 TRUS 영상의 전립선 분할

  • 박재흥 (경상대학교 컴퓨터과학과, 컴.정보통신연구원) ;
  • 서영건 (경상대학교 컴퓨터과학과, 컴.정보통신연구원)
  • Received : 2012.10.29
  • Accepted : 2012.11.01
  • Published : 2012.12.31

Abstract

In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound(TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a method for automatic prostate segmentation inTRUS images using support vectors and snake-like contour is presented. This method involves preprocessing, extracting Gabor feature, training, and prostate segmentation. Gabor filter bank for extracting the texture features has been implemented. A support vector machine(SVM) for training step has been used to get each feature of prostate and nonprostate. The boundary of prostate is extracted by the snake-like contour algorithm. The results showed that this new algorithm extracted the prostate boundary with less than 9.3% relative to boundary provided manually by experts.

TRUS영상에서 전립선에 대한 많은 진단과 치료 과정에서 정확한 전립선 경계의 추출이 요구된다. 여기에는 전립선 경계의 애매함, 반점, 낮은 그레이 레벨로 인하여 많은 어려움이 존재한다. 본 논문에서는 서포트 벡터와 뱀형상 윤곽선을 이용하여 TRUS영상의 자동 전립선 분할에 대한 방법을 제안한다. 이 방법은 전처리, 가버 특성 추출, 학습, 전립선 추출 단계로 구성된다. 텍스처 특성을 추출하기 위하여 가버 필터 뱅크가 사용되며, 학습 과정에서 전립선과 비전립선의 각 특성을 얻기 위하여, SVM이 사용된다. 전립선의 경계는 뱀형상 윤곽 알고리즘에 의해 추출된다. 실험 결과, 제안된 알고리즘은 인간 전문가가 추출한 경계와 비교했을 때 9.3%보다 적은 차이로 전립선 경계를 추출할 수 있었다.

Keywords

References

  1. Cancer Facts and Figures.American Cancer Society.
  2. Mettlin C: American society nationalcancer detectionproject.Cancer1995,75:1790-1794. https://doi.org/10.1002/1097-0142(19950401)75:7+<1790::AID-CNCR2820751607>3.0.CO;2-Z
  3. http://www.cancer.org/Research/CancerFactsFigures/CancerFactsFigures/cancer-facts-figures-2011
  4. A. Chakraborty, L. H. Staib, and J. S. Duncan,"Deformable Boundary Finding in Medical Images by Integrating Gradient and Region Information," IEEE Trans. Med. Imag., Vol.15, No.6, pp.859-870, Dec. 1996. https://doi.org/10.1109/42.544503
  5. P. D. Grimm, J. C. Balsko, and H. Ragde, "US Guided Transperineal Implantation of Iodine 125 and Palladium 103 for theTreatment of Early Stage Prostate Cancer," Atlas Urol. Clin. No. Amer., Vol.2, pp.113-125, 1994.
  6. Y. Zhanand D. Shen, "Deformable Segmentation of 3-D US Prostate Images Using Statistical Texture Matching Method," IEEE Trans. on Med. Imag., Vol.256, pp. 245-255, March 200
  7. A. Rafiee, A. Salimi, and A. Roostam, "A Novel Prostate Segmentation Algorithm in TRUS Images," World Academy of Science, Eng. and Tech. 45, pp.120-124, 2008.
  8. S. D. Pathak, V. Chalana, D. R. Haynor, and Y. Kim, "Edge-guided Boundary Delineation in Prostate US Images," IEEE Trans. Med. Imag., Vol.19, No.12, pp.1211-1221, Dec. 2009.
  9. D. Shen, Y. Zhan, and C. Davatzikos, "Segmentation Prostate Boundaries from Ultrasound Images Using Statistical Shape Model," IEEE Trans. Med. Imag., Vol.22, No.4, pp.539-551, Apr. 2003. https://doi.org/10.1109/TMI.2003.809057
  10. F. Shao, K. V. Ling, and W. S. Ng, "3-D Prostate Surface Detection from Ultrasound Images based on Level Set Method," in Proc. MICCAI 2003, pp.389-396, 2003.
  11. P. Yan, S. Xu, B. Turkbey and J. Kruecker, "Adaptively Learning Local Shape Statistics for Prostate Segmentation in Ultrasound," IEEE Trans. On Bio. Eng., Vol. 58, No. 3, pp. 633-641, Mar. 2011. https://doi.org/10.1109/TBME.2010.2094195
  12. H. Akbari, X. Yang, L. Haligand B. Fei, "3D Segmentation of Prostate US Images Using Wavelet Transform," Proc. of SPIE, 2011.
  13. B. E. Boser, I. M. Guyonand V. N. Vapnik. "A Training Algorithm for Optimal Margin Classifiers," In D. Haussler, 5th Annual ACM Workshopon COLT, pp.144-152,1992.
  14. J. Suriand A. Farag, "Deformable Models2," Springer, pp.75-94, 2007.
  15. A. Ghanei, H. Zadeh, A. Ratkesicz, and F. Yin, "A 3D Deformable Model for Segmentation of Human Prostatefrom Ultrasound Image," Med. Phys., Vol.28, pp.2147-2153. 2001. https://doi.org/10.1118/1.1388221