• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.03 seconds

Pitch Command Generation Method for Consistent Initial Trajectory of Thrust-Vector-Controlled Vehicle (추력벡터제어 비행체의 일관된 탄도 성형을 위한 피치각명령 산출 방법)

  • Lee, Yong-In;Choe, Dong-Gyun;Hwang, Tae-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.739-744
    • /
    • 2013
  • In this paper, we propose a method of generating pitch commands for consistent initial trajectories irrelevant to flight conditions in the initial boosting phase of a thrust-vector-controlled vehicle. After shape assumption of the pitch command profile, parameters of the profile are determined in real time in order for the summit height of the trajectory to be a desired value by deriving the summit height considering thrust performance, gravity, and other flight conditions. Computer simulation results demonstrate good performance of the proposed method.

A New Overmodulation Strategy for Traction Dirve. (견인용 인버터를 위한 새로운 과변조 기법)

  • 배본호;설승기;김상훈;이인석;한성수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.171-178
    • /
    • 1998
  • This paper proposes a new overmodulation strategy to give a better voltage utilization by tracking voltage vector along hexagon sides. This strategy enables the inverter to control both magnitude and angle of current. Therefore, the vector control using this strategy can lead to better output torque dynamics compared to the conventional slip frequency control with six-step voltage, which is widely used in the traction drive. In this strategy, the d-axis output voltage of a current controller to control the flux is conserved and the q-axis output voltage to control the torque is controlled to place the voltage vector on the hexagon boundary In case of overmodulation. The limited q-axis voltage is used for anti-windup of q-axis current controller. This paper also presents a new field weakening scheme which incorporate the proposed overmodulation strategy. In this scheme, the flux level is selected by both required current limit and the available maximum voltage along hexagon sides. The validity of the proposed overall scheme is confirmed by the computer simulations for a typical traction drive with a 210[㎾] induction motor.

  • PDF

A Classification of Breast Tumor Tissue Images Using SVM (SVM을 이용한 유방 종양 조직 영상의 분류)

  • Hwang, Hae-Gil;Choi, Hyun-Ju;Yoon, Hye-Kyoung;Choi, Heung-Kook
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.178-181
    • /
    • 2005
  • Support vector machines is a powerful learning algorithm and attempt to separate belonging to two given sets in N-dimensional real space by a nonlinear surface, often only implicitly dened by a kernel function. We described breast tissue images analyses using texture features from Haar wavelet transformed images to classify breast lesion of ductal organ Benign, DCIS and CA. The approach for creating a classifier is composed of 2 steps: feature extraction and classification. Therefore, in the feature extraction step, we extracted texture features from wavelet transformed images with $10{\times}$ magnification. In the classification step, we created four classifiers from each image of extracted features using SVM(Support Vector Machines). In this study, we conclude that the best classifier in histological sections of breast tissue in the texture features from second-level wavelet transformed images used in Polynomial function.

  • PDF

Analysis of the Phase Current Measurement Boundary of Three Shunt Sensing PWM Inverters and an Expansion Method

  • Cho, Byung-Geuk;Ha, Jung-Ik;Sul, Seung-Ki
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.232-242
    • /
    • 2013
  • To obtain phase currents information in AC drives, shunt sensing technology is known to show great performance in cost-effectiveness and therefore it is widely used in low cost applications. However, shunt sensing methods are unable to acquire phase currents in certain operation conditions. This paper deals with the derivation of the boundary conditions for phase current reconstruction in three-shunt sensing inverters and proposes a voltage injection method to expand the measurable areas. As the boundary conditions are deeply dependent on the switching patterns, they are typically analyzed on the voltage vector plane for space vector pulse width modulation (SVPWM) and discontinuous pulse width modulation (DPWM). In the proposed method, the voltage injection and its compensation are conducted within one sampling period. This guarantees fast current reconstruction and the injected voltage is decided so as to minimize the current ripple. In addition to the voltage injection method, a sampling point shifting method is also introduced to improve the boundary conditions. Simulation and experimental results are presented to verify the boundary condition derivation and the effectiveness of the proposed voltage injection method.

Lossless VQ Indices Compression Based on the High Correlation of Adjacent Image Blocks

  • Wang, Zhi-Hui;Yang, Hai-Rui;Chang, Chin-Chen;Horng, Gwoboa;Huang, Ying-Hsuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2913-2929
    • /
    • 2014
  • Traditional vector quantization (VQ) schemes encode image blocks as VQ indices, in which there is significant similarity between the image block and the codeword of the VQ index. Thus, the method can compress an image and maintain good image quality. This paper proposes a novel lossless VQ indices compression algorithm to further compress the VQ index table. Our scheme exploits the high correlation of adjacent image blocks to search for the same VQ index with the current encoding index from the neighboring indices. To increase compression efficiency, codewords in the codebook are sorted according to the degree of similarity of adjacent VQ indices to generate a state codebook to find the same index with the current encoding index. Note that the repetition indices both on the search path and in the state codebooks are excluded to increase the possibility for matching the current encoding index. Experimental results illustrated the superiority of our scheme over other compression schemes in the index domain.

Intelligent Shape Analysis of the 3D Hippocampus Using Support Vector Machines (SVM을 이용한 3차원 해마의 지능적 형상 분석)

  • Kim, Jeong-Sik;Kim, Yong-Guk;Choi, Soo-Mi
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1387-1392
    • /
    • 2006
  • 본 논문에서는 SVM (Support Vector Machine)을 기반으로 하여 인체의 뇌 하부구조인 해마에 대한 지능적 형상분석 방법을 제공한다. 일반적으로 의료 영상으로부터 해마의 형상 분석을 하기 위해서는 충분한 임상 데이터를 필요로 한다. 하지만 현실적으로 많은 양의 표본들을 얻는 것이 쉽지 않기 때문에 전문가의 지식을 기반으로 한 작업이 수반되어야 한다. 결국 이러한 요소들이 분석 작업을 어렵게 한다. 의학 기술이 복잡해 지면서 최근의 형상 분석 연구는 점차 통계적 모델을 기반으로 진행되고 있다. 본 연구에서는 해마로부터 고해상도의 매개변수형 모델을 만들어 형상 표현으로 이용하고, 집단간 분류 작업에 SVM 알고리즘을 적용하는 지능적 분석 방법을 구현한다. 우선 메쉬 데이터로부터 물리변형모델 기반의 매개변수 모델을 구축하고, PDM (point distribution model) 방법을 적용하여 두 집단을 대표하는 평균 모델을 생성한다. 마지막으로 SVM 기반의 이진 분류기를 구축하여 집단간 분류 작업을 수행한다. 구현한 모델링 방법과 분류기의 성능을 평가하기 위하여 본 연구에서는 네 가지 커널 함수 (linear, radial basis function, polynomial, sigmoid)들을 적용한다. 본 논문에서 제시한 매개변수형 모델은 다양한 형태의 의료 데이터로부터 보편적인 3차원 모델을 생성하고, 또한 모델의 전역적, 국부적인 특징들을 복합적으로 표현할 수 있기 때문에 통계적 형상분석에 적합하다. 그리고 SVM 기반의 분류기는 적은 수의 학습 데이터로부터 정상인 해마 집단과 간질 환자 집단간의 정확한 분류를 가능하게 한다.

  • PDF

On-load Parameter Identification of an Induction Motor Using Univariate Dynamic Encoding Algorithm for Searches

  • Kim, Jong-Wook;Kim, Nam-Gun;Choi, Seong-Chul;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.852-856
    • /
    • 2004
  • An induction motor is one of the most popular electrical apparatuses owing to its simple structure and robust construction. Parameter identification of the induction motor has long been researched either for a vector control technique or fault detection. Since vector control is a well-established technique for induction motor control, this paper concentrates on successive identification of physical parameters with on-load data for the purpose of condition monitoring and/or fault detection. For extracting six physical parameters from the on-load data in the framework of the induction motor state equation, unmeasured initial state values and profiles of load torque have to be estimated as well. However, the analytic optimization methods in general fail to estimate these auxiliary but significant parameters owing to the difficulty of obtaining their gradient information. In this paper, the univariate dynamic encoding algorithm for searches (uDEAS) newly developed is applied to the identification of whole unknown parameters in the mathematical equations of an induction motor with normal operating data. Profiles of identified parameters appear to be reasonable and therefore the proposed approach is available for fault diagnosis of induction motors by monitoring physical parameters.

  • PDF

Sign Language Translation Using Deep Convolutional Neural Networks

  • Abiyev, Rahib H.;Arslan, Murat;Idoko, John Bush
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.631-653
    • /
    • 2020
  • Sign language is a natural, visually oriented and non-verbal communication channel between people that facilitates communication through facial/bodily expressions, postures and a set of gestures. It is basically used for communication with people who are deaf or hard of hearing. In order to understand such communication quickly and accurately, the design of a successful sign language translation system is considered in this paper. The proposed system includes object detection and classification stages. Firstly, Single Shot Multi Box Detection (SSD) architecture is utilized for hand detection, then a deep learning structure based on the Inception v3 plus Support Vector Machine (SVM) that combines feature extraction and classification stages is proposed to constructively translate the detected hand gestures. A sign language fingerspelling dataset is used for the design of the proposed model. The obtained results and comparative analysis demonstrate the efficiency of using the proposed hybrid structure in sign language translation.

Robot Control based on Steady-State Visual Evoked Potential using Arduino and Emotiv Epoc (아두이노와 Emotiv Epoc을 이용한 정상상태시각유발전위 (SSVEP) 기반의 로봇 제어)

  • Yu, Je-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.254-259
    • /
    • 2015
  • In this paper, The wireless robot control system was proposed using Brain-computer interface(BCI) systems based on the steady-state visual evoked potential(SSVEP). Cross Power Spectral Density(CPSD) was used for analysis of electroencephalogram(EEG) and extraction of feature data. And Linear Discriminant Analysis(LDA) and Support Vector Machine(SVM) was used for patterns classification. We obtained the average classification rates of about 70% of each subject. Robot control was implemented using the results of classification of EEG and commanded using bluetooth communication for robot moving.

Emotion recognition from speech using Gammatone auditory filterbank

  • Le, Ba-Vui;Lee, Young-Koo;Lee, Sung-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.255-258
    • /
    • 2011
  • An application of Gammatone auditory filterbank for emotion recognition from speech is described in this paper. Gammatone filterbank is a bank of Gammatone filters which are used as a preprocessing stage before applying feature extraction methods to get the most relevant features for emotion recognition from speech. In the feature extraction step, the energy value of output signal of each filter is computed and combined with other of all filters to produce a feature vector for the learning step. A feature vector is estimated in a short time period of input speech signal to take the advantage of dependence on time domain. Finally, in the learning step, Hidden Markov Model (HMM) is used to create a model for each emotion class and recognize a particular input emotional speech. In the experiment, feature extraction based on Gammatone filterbank (GTF) shows the better outcomes in comparison with features based on Mel-Frequency Cepstral Coefficient (MFCC) which is a well-known feature extraction for speech recognition as well as emotion recognition from speech.