• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.027 seconds

A Stay Detection Algorithm Using GPS Trajectory and Points of Interest Data

  • Eunchong Koh;Changhoon Lyu;Goya Choi;Kye-Dong Jung;Soonchul Kwon;Chigon Hwang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.176-184
    • /
    • 2023
  • Points of interest (POIs) are widely used in tourism recommendations and to provide information about areas of interest. Currently, situation judgement using POI and GPS data is mainly rule-based. However, this approach has the limitation that inferences can only be made using predefined POI information. In this study, we propose an algorithm that uses POI data, GPS data, and schedule information to calculate the current speed, location, schedule matching, movement trajectory, and POI coverage, and uses machine learning to determine whether to stay or go. Based on the input data, the clustered information is labelled by k-means algorithm as unsupervised learning. This result is trained as the input vector of the SVM model to calculate the probability of moving and staying. Therefore, in this study, we implemented an algorithm that can adjust the schedule using the travel schedule, POI data, and GPS information. The results show that the algorithm does not rely on predefined information, but can make judgements using GPS data and POI data in real time, which is more flexible and reliable than traditional rule-based approaches. Therefore, this study can optimize tourism scheduling. Therefore, the stay detection algorithm using GPS movement trajectories and POIs developed in this study provides important information for tourism schedule planning and is expected to provide much value for tourism services.

Cross-architecture Binary Function Similarity Detection based on Composite Feature Model

  • Xiaonan Li;Guimin Zhang;Qingbao Li;Ping Zhang;Zhifeng Chen;Jinjin Liu;Shudan Yue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2101-2123
    • /
    • 2023
  • Recent studies have shown that the neural network-based binary code similarity detection technology performs well in vulnerability mining, plagiarism detection, and malicious code analysis. However, existing cross-architecture methods still suffer from insufficient feature characterization and low discrimination accuracy. To address these issues, this paper proposes a cross-architecture binary function similarity detection method based on composite feature model (SDCFM). Firstly, the binary function is converted into vector representation according to the proposed composite feature model, which is composed of instruction statistical features, control flow graph structural features, and application program interface calling behavioral features. Then, the composite features are embedded by the proposed hierarchical embedding network based on a graph neural network. In which, the block-level features and the function-level features are processed separately and finally fused into the embedding. In addition, to make the trained model more accurate and stable, our method utilizes the embeddings of predecessor nodes to modify the node embedding in the iterative updating process of the graph neural network. To assess the effectiveness of composite feature model, we contrast SDCFM with the state of art method on benchmark datasets. The experimental results show that SDCFM has good performance both on the area under the curve in the binary function similarity detection task and the vulnerable candidate function ranking in vulnerability search task.

Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

  • Ezgi Gursel ;Bhavya Reddy ;Anahita Khojandi;Mahboubeh Madadi;Jamie Baalis Coble;Vivek Agarwal ;Vaibhav Yadav;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.603-622
    • /
    • 2023
  • Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems.

DECOMPOSITION OF SPECIAL PSEUDO PROJECTIVE CURVATURE TENSOR FIELD

  • MOHIT SAXENA;PRAVEEN KUMAR MATHUR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.5
    • /
    • pp.989-999
    • /
    • 2023
  • The aim of this paper is to study the projective curvature tensor field of the Curvature tensor Rijkh on a recurrent non Riemannian space admitting recurrent affine motion, which is also decomposable in the form Rijkh=Xi Yjkh, where Xi and Yjkh are non-null vector and tensor respectively. In this paper we decompose Special Pseudo Projective Curvature Tensor Field. In the sequal of decomposition we established several properties of such decomposed tensor fields. We have considered the curvature tensor field Rijkh in a Finsler space equipped with non symmetric connection and we study the decomposition of such field. In a special Pseudo recurrent Finsler Space, if the arbitrary tensor field 𝜓ij is assumed to be a covariant constant then, in view of the decomposition rule, 𝜙kh behaves as a recurrent tensor field. In the last, we have considered the decomposition of curvature tensor fields in Kaehlerian recurrent spaces and have obtained several related theorems.

QA Pair Passage RAG-based LLM Korean chatbot service (QA Pair Passage RAG 기반 LLM 한국어 챗봇 서비스)

  • Joongmin Shin;Jaewwook Lee;Kyungmin Kim;Taemin Lee;Sungmin Ahn;JeongBae Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.683-689
    • /
    • 2023
  • 자연어 처리 분야는 최근에 큰 발전을 보였으며, 특히 초대규모 언어 모델의 등장은 이 분야에 큰 영향을 미쳤다. GPT와 같은 모델은 다양한 NLP 작업에서 높은 성능을 보이고 있으며, 특히 챗봇 분야에서 중요하게 다루어지고 있다. 하지만, 이러한 모델에도 여러 한계와 문제점이 있으며, 그 중 하나는 모델이 기대하지 않은 결과를 생성하는 것이다. 이를 해결하기 위한 다양한 방법 중, Retrieval-Augmented Generation(RAG) 방법이 주목받았다. 이 논문에서는 지식베이스와의 통합을 통한 도메인 특화형 질의응답 시스템의 효율성 개선 방안과 벡터 데이터 베이스의 수정을 통한 챗봇 답변 수정 및 업데이트 방안을 제안한다. 본 논문의 주요 기여는 다음과 같다: 1) QA Pair Passage RAG을 활용한 새로운 RAG 시스템 제안 및 성능 향상 분석 2) 기존의 LLM 및 RAG 시스템의 성능 측정 및 한계점 제시 3) RDBMS 기반의 벡터 검색 및 업데이트를 활용한 챗봇 제어 방법론 제안

  • PDF

Multidimensional Analysis of Consumers' Opinions from Online Product Reviews

  • Taewook Kim;Dong Sung Kim;Donghyun Kim;Jong Woo Kim
    • Asia pacific journal of information systems
    • /
    • v.29 no.4
    • /
    • pp.838-855
    • /
    • 2019
  • Online product reviews are a vital source for companies in that they contain consumers' opinions of products. The earlier methods of opinion mining, which involve drawing semantic information from text, have been mostly applied in one dimension. This is not sufficient in itself to elicit reviewers' comprehensive views on products. In this paper, we propose a novel approach in opinion mining by projecting online consumers' reviews in a multidimensional framework to improve review interpretation of products. First of all, we set up a new framework consisting of six dimensions based on a marketing management theory. To calculate the distances of review sentences and each dimension, we embed words in reviews utilizing Google's pre-trained word2vector model. We classified each sentence of the reviews into the respective dimensions of our new framework. After the classification, we measured the sentiment degrees for each sentence. The results were plotted using a radar graph in which the axes are the dimensions of the framework. We tested the strategy on Amazon product reviews of the iPhone and Galaxy smartphone series with a total of around 21,000 sentences. The results showed that the radar graphs visually reflected several issues associated with the products. The proposed method is not for specific product categories. It can be generally applied for opinion mining on reviews of any product category.

Person Identification based on Clothing Feature (의상 특징 기반의 동일인 식별)

  • Choi, Yoo-Joo;Park, Sun-Mi;Cho, We-Duke;Kim, Ku-Jin
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • With the widespread use of vision-based surveillance systems, the capability for person identification is now an essential component. However, the CCTV cameras used in surveillance systems tend to produce relatively low-resolution images, making it difficult to use face recognition techniques for person identification. Therefore, an algorithm is proposed for person identification in CCTV camera images based on the clothing. Whenever a person is authenticated at the main entrance of a building, the clothing feature of that person is extracted and added to the database. Using a given image, the clothing area is detected using background subtraction and skin color detection techniques. The clothing feature vector is then composed of textural and color features of the clothing region, where the textural feature is extracted based on a local edge histogram, while the color feature is extracted using octree-based quantization of a color map. When given a query image, the person can then be identified by finding the most similar clothing feature from the database, where the Euclidean distance is used as the similarity measure. Experimental results show an 80% success rate for person identification with the proposed algorithm, and only a 43% success rate when using face recognition.

Regional Projection Histogram Matching and Linear Regression based Video Stabilization for a Moving Vehicle (영역별 수직 투영 히스토그램 매칭 및 선형 회귀모델 기반의 차량 운행 영상의 안정화 기술 개발)

  • Heo, Yu-Jung;Choi, Min-Kook;Lee, Hyun-Gyu;Lee, Sang-Chul
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.798-809
    • /
    • 2014
  • Video stabilization is performed to remove unexpected shaky and irregular motion from a video. It is often used as preprocessing for robust feature tracking and matching in video. Typical video stabilization algorithms are developed to compensate motion from surveillance video or outdoor recordings that are captured by a hand-help camera. However, since the vehicle video contains rapid change of motion and local features, typical video stabilization algorithms are hard to be applied as it is. In this paper, we propose a novel approach to compensate shaky and irregular motion in vehicle video using linear regression model and vertical projection histogram matching. Towards this goal, we perform vertical projection histogram matching at each sub region of an input frame, and then we generate linear regression model to extract vertical translation and rotation parameters with estimated regional vertical movement vector. Multiple binarization with sub-region analysis for generating the linear regression model is effective to typical recording environments where occur rapid change of motion and local features. We demonstrated the effectiveness of our approach on blackbox videos and showed that employing the linear regression model achieved robust estimation of motion parameters and generated stabilized video in full automatic manner.

A Smart Image Classification Algorithm for Digital Camera by Exploiting Focal Length Information (초점거리 정보를 이용한 디지털 사진 분류 알고리즘)

  • Ju, Young-Ho;Cho, Hwan-Gue
    • Journal of the Korea Computer Graphics Society
    • /
    • v.12 no.4
    • /
    • pp.23-32
    • /
    • 2006
  • In recent years, since the digital camera has been popularized, so users can easily collect hundreds of photos in a single usage. Thus the managing of hundreds of digital photos is not a simple job comparing to the keeping paper photos. We know that managing and classifying a number of digital photo files are burdensome and annoying sometimes. So people hope to use an automated system for managing digital photos especially for their own purposes. The previous studies, e.g. content-based image retrieval, were focused on the clustering of general images, which it is not to be applied on digital photo clustering and classification. Recently, some specialized clustering algorithms for images clustering digital camera images were proposed. These algorithms exploit mainly the statistics of time gap between sequent photos. Though they showed a quite good result in image clustering for digital cameras, still lots of improvements are remained and unsolved. For example the current tools ignore completely the image transformation with the different focal lengths. In this paper, we present a photo considering focal length information recorded in EXIF. We propose an algorithms based on MVA(Matching Vector Analysis) for classification of digital images taken in the every day activity. Our experiment shows that our algorithm gives more than 95% success rates, which is competitive among all available methods in terms of sensitivity, specificity and flexibility.

  • PDF

The image format research which is suitable in animation work (애니메이션 작업에 사용되는 이미지 포맷 연구)

  • Kwon, Dong-Hyun
    • Cartoon and Animation Studies
    • /
    • s.14
    • /
    • pp.37-51
    • /
    • 2008
  • The computer has become an indispensable tool for animation works. However if you don't understand the characteristics of the computer and its software, you might not have the result satisfying your efforts. The incorrect understanding of image format sometimes causes it. Habitually image formats are selected usually for most of works but there is a distinct difference among those image formats while the efficient usages of them are different from each other. For your more efficient work therefore, you need to identify the characteristics of various kinds of image format used mostly for animation works. First I took a look at the theories of the lossy compression and lossless compression, which are two types of data compression widely used in the whole parts of computer world and the difference between bitmap method and vector method, which are respectably different in terms of the way of expressing images and finally the 24 bit true color and 8 bits alpha channel. Based on those characteristics, I have analyzed the functional difference among image formats used between various types of animation works such as 2D, 3D, composing and editing and also the benefits and weakness of them. Additionally I've proved it is wrong that the JPEG files consume a small space in computer work. In conclusion, I suggest the TIF format as the most efficient format for whatever it is editing, composing, 3D and 2D in considering capacity, function and image quality and also I'd like to recommend PSD format which has compatibility and excellent function, since the Adobe educational programs are used a lot for the school education. I hope this treatise to contribute to your right choice of image format in school education and practical works.

  • PDF