• Title/Summary/Keyword: vector computer

Search Result 2,006, Processing Time 0.024 seconds

The problem resolution algorithm in ESP protocol (ESP 프로토콜에서의 문제점 보완 알고리즘)

  • Lee, Yeong-Ji;Kim, Tae-Yun
    • The KIPS Transactions:PartC
    • /
    • v.9C no.2
    • /
    • pp.189-196
    • /
    • 2002
  • IPSec is a protocol which provides data encryption, message authentication and data integrity on public and open network transmission. In IPSec, ESP protocol is used when it needs to Provide data encryption, authentication and integrity in real transmission Packets. ESP protocol uses DES-CBC encryption mode when sender encrypts packets and receiver decrypts data through this mode IV is used at that tome. This vague has many risks of attack during transmission by attacker because it is transferred clean and opened. If IV value is modified, then decryption of ESP data is impossible and higher level information is changed. In this paper we propose a new algorithm that it encrpty IV values using DES-ECB mode for preventing IV attack and checks integrity of whole ESP data using message authentication function. Therefore, we will protect attacks of IV and data, and guarantee more safe transmission on the public network.

License Plate Location Using SVM (SVM을 이용한 차량 번호판 위치 추출)

  • Hong, Seok-Keun;Chun, Joo-Kwong;An, Myoung-Seok;Shim, Jun-Hwan;Cho, Seok-Je
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.845-850
    • /
    • 2008
  • In this paper, we propose a license plate locating algorithm by using SVM. Tipically, the features regarding license plate format include height-to-width ratio, color, and spatial frequency. The method is dived into three steps which are image acquisition, detecting license plate candidate regions, verifying the license plate accurately. In the course of detecting license plate candidate regions, color filtering and edge detecting are performed to detect candidate regions, and then verify candidate region using Support Vector Machines(SVM) with DCT coefficients of candidates. It is possible to perform reliable license plate location bemuse we can protect false detection through these verification process. We validate our approach with experimental results.

A Fast Method for Face Detection Based on PCA and SVM (PCA와 SVM에 기반하는 빠른 얼굴탐지 방법)

  • Xia, Chun-Lei;Shin, Hyeon-Gab;Park, Myeong-Chul;Ha, Seok-Wun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1129-1135
    • /
    • 2007
  • Human face detection technique plays an important role in computer vision area. It has lots of applications such as face recognition, video surveillance, human computer interface, face image database management, and querying image databases. In this paper, a fast face detection approach using Principal Component Analysis (PCA) and Support Vector Machines (SVM) is proposed based on the previous study on face detection technique. In the proposed detection system, firstly it filter the face potential area using statistical feature which is generated by analyzing the local histogram distribution the detection process is speeded up by eliminating most of the non-face area in this step. In the next step, PCA feature vectors are generated, and then detect whether there are faces present in the test image using SVM classifier. Finally, store the detection results and output the results on the test image. The test images in this paper are from CMU face database. The face and non-face samples are selected from the MIT data set. The experimental results indicate the proposed method has good performance for face detection.

Partial Inverse Traveling Salesman Problems on the Line

  • Chung, Yerim;Park, Myoung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.119-126
    • /
    • 2019
  • The partial inverse optimization problem is an interesting variant of the inverse optimization problem in which the given instance of an optimization problem need to be modified so that a prescribed partial solution can constitute a part of an optimal solution in the modified instance. In this paper, we consider the traveling salesman problem defined on the line (TSP on the line) which has many applications such as item delivery systems, the collection of objects from storage shelves, and so on. It is worth studying the partial inverse TSP on the line, defined as follows. We are given n requests on the line, and a sequence of k requests that need to be served consecutively. Each request has a specific position on the real line and should be served by the server traveling on the line. The task is to modify as little as possible the position vector associated with n requests so that the prescribed sequence can constitute a part of the optimal solution (minimum Hamiltonian cycle) of TSP on the line. In this paper, we show that the partial inverse TSP on the line and its variant can be solved in polynomial time when the sever is equiped with a specific internal algorithm Forward Trip or with a general optimal algorithm.

Development of a Detection and Recognition System for Rectangular Marker (사각형 마커 검출 및 인식 시스템 개발)

  • Kang Sun-Kyung;Lee Sang-Seol;Jung Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.97-107
    • /
    • 2006
  • In this paper, we present a method for the detection and recognition of rectangular markers from a camera image. It converts the camera image to a binary image and extracts contours of objects in the binary image. After that. it approximates the contours to a list of line segments. It finds rectangular markers by using geometrical features which are extracted from the approximated line segments. It normalizes the shape of extracted markers into exact squares by using the warping technique. It extracts feature vectors from marker image by using principal component analysis. It then calculates the distance between feature vector of input marker image and those of standard markers. Finally, it recognizes the marker by using minimum distance method. Experimental results show that the Proposed method achieves 98% recognition rate at maximum for 50 markers and execution speed of 11.1 frames/sec for images which contains eleven markers.

  • PDF

A study on the Extraction of Similar Information using Knowledge Base Embedding for Battlefield Awareness

  • Kim, Sang-Min;Jin, So-Yeon;Lee, Woo-Sin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.33-40
    • /
    • 2021
  • Due to advanced complex strategies, the complexity of information that a commander must analyze is increasing. An intelligent service that can analyze battlefield is needed for the commander's timely judgment. This service consists of extracting knowledge from battlefield information, building a knowledge base, and analyzing the battlefield information from the knowledge base. This paper extract information similar to an input query by embedding the knowledge base built in the 2nd step. The transformation model is needed to generate the embedded knowledge base and uses the random-walk algorithm. The transformed information is embedding using Word2Vec, and Similar information is extracted through cosine similarity. In this paper, 980 sentences are generated from the open knowledge base and embedded as a 100-dimensional vector and it was confirmed that similar entities were extracted through cosine similarity.

Neighbor-Based Probabilistic Rebroadcast Routing Protocol for Reducing Routing Overhead in Mobile Ad Hoc Networks

  • Harum, Norharyati;Hamid, Erman;Bahaman, Nazrulazhar;Ariff, Nor Azman Mat;Mas'ud, Mohd Zaki
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.1-8
    • /
    • 2021
  • In Mobile Ad-Hoc Network (MANET) Application, routing protocol is essential to ensure successful data transmission to all nodes. Ad-hoc On-demand Distance Vector (AODV) Protocol is a reactive routing protocol that is mostly used in MANET applications. However, the protocol causes Route Request (RREQ) message flooding issue due to the broadcasting method at the route request stage to find a path to a particular destination, where the RREQ will be rebroadcast if no Request Response (RREP) message is received. A scalable neighbor-based routing (SNBR) protocol was then proposed to overcome the issue. In the SNBR protocol, the RREQ message is only rebroadcast if the number of neighbor nodes less than a certain fix number, known as drop factor. However, since a network always have a dynamic characteristic with a dynamic number of neighbor nodes, the fix drop factor in SNBR protocol could not provide an optimal flooding problem solution in a low dense network environment, where the RREQ message is continuously rebroadcast RREQ message until reach the fix drop factor. To overcome this problem, a new broadcasting method as Dynamic SNBR (DSNBR) is proposed, where the drop factor is determined based on current number of neighbor nodes. This method rebroadcast the extra RREQ messages based on the determined dynamic drop factor. The performance of the proposed DSNBR is evaluated using NS2 and compared with the performance of the existing protocol; AODV and SNBR. Simulation results show that the new routing protocol reduces the routing request overhead, energy consumption, MAC Collision and enhances end-to-end delay, network coverage ratio as a result of reducing the extra route request messages.

A Best Effort Classification Model For Sars-Cov-2 Carriers Using Random Forest

  • Mallick, Shrabani;Verma, Ashish Kumar;Kushwaha, Dharmender Singh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2021
  • The whole world now is dealing with Coronavirus, and it has turned to be one of the most widespread and long-lived pandemics of our times. Reports reveal that the infectious disease has taken toll of the almost 80% of the world's population. Amidst a lot of research going on with regards to the prediction on growth and transmission through Symptomatic carriers of the virus, it can't be ignored that pre-symptomatic and asymptomatic carriers also play a crucial role in spreading the reach of the virus. Classification Algorithm has been widely used to classify different types of COVID-19 carriers ranging from simple feature-based classification to Convolutional Neural Networks (CNNs). This research paper aims to present a novel technique using a Random Forest Machine learning algorithm with hyper-parameter tuning to classify different types COVID-19-carriers such that these carriers can be accurately characterized and hence dealt timely to contain the spread of the virus. The main idea for selecting Random Forest is that it works on the powerful concept of "the wisdom of crowd" which produces ensemble prediction. The results are quite convincing and the model records an accuracy score of 99.72 %. The results have been compared with the same dataset being subjected to K-Nearest Neighbour, logistic regression, support vector machine (SVM), and Decision Tree algorithms where the accuracy score has been recorded as 78.58%, 70.11%, 70.385,99% respectively, thus establishing the concreteness and suitability of our approach.

Sensor Data Collection & Refining System for Machine Learning-Based Cloud (기계학습 기반의 클라우드를 위한 센서 데이터 수집 및 정제 시스템)

  • Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.165-170
    • /
    • 2021
  • Machine learning has recently been applied to research in most areas. This is because the results of machine learning are not determined, but the learning of input data creates the objective function, which enables the determination of new data. In addition, the increase in accumulated data affects the accuracy of machine learning results. The data collected here is an important factor in machine learning. The proposed system is a convergence system of cloud systems and local fog systems for service delivery. Thus, the cloud system provides machine learning and infrastructure for services, while the fog system is located in the middle of the cloud and the user to collect and refine data. The data for this application shall be based on the Sensitive data generated by smart devices. The machine learning technique applied to this system uses SVM algorithm for classification and RNN algorithm for status recognition.

Semi-automatic Data Fusion Method for Spatial Datasets (공간 정보를 가지는 데이터셋의 준자동 융합 기법)

  • Yoon, Jong-chan;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.4
    • /
    • pp.1-13
    • /
    • 2021
  • With the development of big data-related technologies, it has become possible to process vast amounts of data that could not be processed before. Accordingly, the establishment of an automated data selection and fusion process for the realization of big data-based services has become a necessity, not an option. In this paper, we propose an automation technique to create meaningful new information by fusing datasets containing spatial information. Firstly, the given datasets are embedded by using the Node2Vec model and the keywords of each dataset. Then, the semantic similarities among all of datasets are obtained by calculating the cosine similarity for the embedding vector of each pair of datasets. In addition, a person intervenes to select some candidate datasets with one or more spatial identifiers from among dataset pairs with a relatively higher similarity, and fuses the dataset pairs to visualize them. Through such semi-automatic data fusion processes, we show that significant fused information that cannot be obtained with a single dataset can be generated.