• Title/Summary/Keyword: vascular biology

Search Result 523, Processing Time 0.037 seconds

Vascular Endothelial Cadherin-mediated Cell-cell Adhesion Regulated by a Small GTPase, Rap1

  • Fukuhra, Shigetomo;Sakurai, Atsuko;Yamagishi, Akiko;Sako, Keisuke;Mochizuki, Naoki
    • BMB Reports
    • /
    • v.39 no.2
    • /
    • pp.132-139
    • /
    • 2006
  • Vascular endothelial cadherin (VE-cadherin), which belongs to the classical cadherin family, is localized at adherens junctions exclusively in vascular endothelial cells. Biochemical and biomechanical cues regulate the VE-cadherin adhesive potential by triggering the intracellular signals. VE-cadherin-mediated cell adhesion is required for cell survival and endothelial cell deadhesion is required for vascular development. It is therefore crucial to understand how VE-cadherin-based cell adhesion is controlled. This review summarizes the inter-endothelial cell adhesions and introduces our recent advance in Rap1-regulated VE-cadherin adhesion. A further analysis of the VE-cadherin recycling system will aid the understanding of cell adhesion/deadhesion mechanisms mediated by VE-cadherin in response to extracellular stimuli during development and angiogenesis.

Early Ontogeny of Vascular Cambium in Cotyledonary Node of Seedlings in Pinus koraiensis S. et Z. (잣나무(Pinus koraiensis S. et Z.) 유식물의 자엽절에서 유관속 형성층의 초기 발생)

  • 홍성식
    • Journal of Plant Biology
    • /
    • v.36 no.1
    • /
    • pp.29-34
    • /
    • 1993
  • Observation was made on early ontogeny of vascular cambium in the cotyledonary node of Pinus koraiensis seedling in order to clarify the cambial ontogeny of the node which was hardly elongated. In transverse view, the derivatives by the early periclinal divisions at the outer region of the procambial strands differentiated to protophloem with establishing a certain degree of radial seriations. Later, some cells in the central region of the procambial strands begin divide periclinally, eventually the cells, differentiate gradually to the vascular cambium. In tangential view, early procambium is consisted of homogeneous short cells with transverse end walls which are tansformed into the long cells and short cells gradually. The long cells continue intrusive growth and the short cells repeat transverse division. Finally, the long and short cells differentiated to cambial fusiform initials and ray initials respectively. In tangential section, the differentiation pattern of cambial initials resembles that of the stem of Ginkgo biloba. But in transverse view, the characteristics in the origin of vascular cambium of the cotyledonary node resembles that of root. The vascular cambium in cotyledonary node is completed after eleven prophylls were formed.

  • PDF

Korean Red Ginseng Water Extract Restores Impaired Endothelial Function by Inhibiting Arginase Activity in Aged Mice

  • Choi, Kwanhoon;Yoon, Jeongyeon;Lim, Hyun Kyo;Ryoo, Sungwoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.95-101
    • /
    • 2014
  • Cardiovascular disease is the prime cause of morbidity and mortality and the population ages that may contribute to increase in the occurrence of cardiovascular disease. Arginase upregulation is associated with impaired endothelial function in aged vascular system and thus may contribute to cardiovascular disease. According to recent research, Korean Red Ginseng water extract (KRGE) may reduce cardiovascular disease risk by improving vascular system health. The purpose of this study was to examine mechanisms contributing to age-related vascular endothelial dysfunction and to determine whether KRGE improves these functions in aged mice. Young ($10{\pm}3$ weeks) and aged ($55{\pm}5$ weeks) male mice (C57BL/6J) were orally administered 0, 10, or 20 mg/mouse/day of KRGE for 4 weeks. Animals were sacrificed and the aortas were removed. Endothelial arginase activity, nitric oxide (NO) generation and reactive oxygen species (ROS) production, endothelial nitric oxide synthase (eNOS) coupling, vascular tension, and plasma peroxynitrite production were measured. KRGE attenuated arginase activity, restored nitric oxide (NO) generation, reduced ROS production, and enhanced eNOS coupling in aged mice. KRGE also improved vascular tension in aged vessels, as indicated by increased acetylcholine-induced vasorelaxation and improved phenylephrine-stimulated vasoconstriction. Furthermore, KRGE prevented plasma peroxynitrite formation in aged mice, indicating reduced lipid peroxidation. These results suggest KRGE exerts vasoprotective effects by inhibiting arginase activity and augmenting NO signaling and may be a useful treatment for age-dependent vascular diseases.

Poly(ADP-ribose) protects vascular smooth muscle cells from oxidative DNA damage

  • Zhang, Chao;Luo, Tao;Cui, Shijun;Gu, Yongquan;Bian, Chunjing;Chen, Yibin;Yu, Xiaochun;Wang, Zhonggao
    • BMB Reports
    • /
    • v.48 no.6
    • /
    • pp.354-359
    • /
    • 2015
  • Vascular smooth muscle cells (VSMCs) undergo death during atherosclerosis, a widespread cardiovascular disease. Recent studies suggest that oxidative damage occurs in VSMCs and induces atherosclerosis. Here, we analyzed oxidative damage repair in VSMCs and found that VSMCs are hypersensitive to oxidative damage. Further analysis showed that oxidative damage repair in VSMCs is suppressed by a low level of poly (ADP-ribosyl)ation (PARylation), a key post-translational modification in oxidative damage repair. The low level of PARylation is not caused by the lack of PARP-1, the major poly(ADP-ribose) polymerase activated by oxidative damage. Instead, the expression of poly(ADP-ribose) glycohydrolase, PARG, the enzyme hydrolyzing poly(ADP-ribose), is significantly higher in VSMCs than that in the control cells. Using PARG inhibitor to suppress PARG activity facilitates oxidative damage-induced PARylation as well as DNA damage repair. Thus, our study demonstrates a novel molecular mechanism for oxidative damage-induced VSMCs death. This study also identifies the use of PARG inhibitors as a potential treatment for atherosclerosis. [BMB Reports 2015; 48(6): 354-359]

Novel Function of Lycopene in Vascular Endothelial Cell (Lycopene의 새로운 혈관내피세포 생리활성)

  • Cho, Jin-Gu;Kim, Sung-Hyen;Seo, Jeong-Hwa;Ahn, Sun-Young;Jeong, Eun-Sil;Park, Heon-Yong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1093-1099
    • /
    • 2010
  • Little is known about the cardiovascular effects of Lycopene, an anti-cancer and anti-oxidative agent. In this study, we executed a series of experiments with vascular endothelial cells to disclose the cardiovascular functions of lycopene. From our in vitro experiments, lycopene was determined to act as a stimulant to induce endothelial cell proliferation and migration. In addition, lycopene was shown to inhibit lipopolysaccharide (LPS)-induced adhesion of THP-1 leukocytes to endothelial cells, as well as activating mitogen activated protein kinase (MAPK) family members, ERK, JNK and p38 MAPK. Both ERK and p38 MAPK were involved in lycopene-induced cell proliferation, while JNK was involved in lycopene-dependent cell migration. Taken together, lycopene activates MAPK family members which regulate cell proliferation and migration. Lycopene differentially blocks LPS-dependent adhesion for THP-1 to endothelial cells, indicating that lycopene is likely to regulate a variety of vascular functions.

Berberine suppresses in vitro migration of human aortic smooth muscle cells through the inhibitions of MMP-2/9, u-PA, AP-1, and NF-κB

  • Liu, Su-Jian;Yin, Cai-Xia;Ding, Ming-Chao;Xia, Shao-You;Shen, Qin-Min;Wu, Ji-Dong
    • BMB Reports
    • /
    • v.47 no.7
    • /
    • pp.388-392
    • /
    • 2014
  • Berberine, a type of isoquinoline alkaloid isolated from Chinese medicinal herbs, has been reported to have various pharmacological activities. Studies have demonstrated that berberine has beneficial effects on vascular remodeling and alleviates restenosis after vascular injury. However, its mechanism of action on vascular smooth muscle cell migration is not fully understood. We therefore investigated the effect of berberine on human aortic smooth muscle cell (HASMC) migration. Boyden chamber assay was performed to show that berberine inhibited HASMC migration dose-dependently. Real-time PCR and Western blotting analyses showed that levels of matrix metalloproteinase (MMP)-2, MMP-9, and urokinase-type plasminogen activator (u-PA) were reduced by berberine at both the mRNA and protein levels. Western blotting assay further confirmed that activities of c-Fos, c-Jun, and NF-${\kappa}B$ were significantly attenuated. These results suggest that berberine effectively inhibited HASMC migration, possibly by down-regulating MMP-2, MMP-9, and u-PA; and interrupting AP-1 and NF-${\kappa}B$ mediated signaling pathways.

Endothelial dysfunction induces atherosclerosis: increased aggrecan expression promotes apoptosis in vascular smooth muscle cells

  • Kim, Sang-Min;Huh, Jae-Wan;Kim, Eun-Young;Shin, Min-Kyung;Park, Ji-Eun;Kim, Seong Who;Lee, Wooseong;Choi, Bongkun;Chang, Eun-Ju
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.145-150
    • /
    • 2019
  • Endothelial dysfunction-induced lipid retention is an early feature of atherosclerotic lesion formation. Apoptosis of vascular smooth muscle cells (VSMCs) is one of the major modulating factors of atherogenesis, which accelerates atherosclerosis progression by causing plaque destabilization and rupture. However, the mechanism underlying VSMC apoptosis mediated by endothelial dysfunction in relation to atherosclerosis remains elusive. In this study, we reveal differential expression of several genes related to lipid retention and apoptosis, in conjunction with atherosclerosis, by utilizing a genetic mouse model of endothelial nitric oxide synthase (eNOS) deficiency manifesting endothelial dysfunction. Moreover, eNOS deficiency led to the enhanced susceptibility against pro-apoptotic insult in VSMCs. In particular, the expression of aggrecan, a major proteoglycan, was elevated in aortic tissue of eNOS deficient mice compared to wild type mice, and administration of aggrecan induced apoptosis in VSMCs. This suggests that eNOS deficiency may elevate aggrecan expression, which promotes apoptosis in VSMC, thereby contributing to atherosclerosis progression. These results may facilitate the development of novel approaches for improving the diagnosis or treatment of atherosclerosis.

WD Repeat Domain 1 Deficiency Inhibits Neointima Formation in Mice Carotid Artery by Modulation of Smooth Muscle Cell Migration and Proliferation

  • Hu, JiSheng;Pi, ShangJing;Xiong, MingRui;Liu, ZhongYing;Huang, Xia;An, Ran;Zhang, TongCun;Yuan, BaiYin
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.749-762
    • /
    • 2020
  • The migration, dedifferentiation, and proliferation of vascular smooth muscle cells (VSMCs) are responsible for intimal hyperplasia, but the mechanism of this process has not been elucidated. WD repeat domain 1 (WDR1) promotes actin-depolymerizing factor (ADF)/cofilin-mediated depolymerization of actin filaments (F-actin). The role of WDR1 in neointima formation and progression is still unknown. A model of intimal thickening was constructed by ligating the left common carotid artery in Wdr1 deletion mice, and H&E staining showed that Wdr1 deficiency significantly inhibits neointima formation. We also report that STAT3 promotes the proliferation and migration of VSMCs by directly promoting WDR1 transcription. Mechanistically, we clarified that WDR1 promotes the proliferation and migration of VSMCs and neointima formation is regulated by the activation of the JAK2/STAT3/WDR1 axis.