DOI QR코드

DOI QR Code

WD Repeat Domain 1 Deficiency Inhibits Neointima Formation in Mice Carotid Artery by Modulation of Smooth Muscle Cell Migration and Proliferation

  • Hu, JiSheng (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology) ;
  • Pi, ShangJing (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology) ;
  • Xiong, MingRui (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology) ;
  • Liu, ZhongYing (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology) ;
  • Huang, Xia (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology) ;
  • An, Ran (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology) ;
  • Zhang, TongCun (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology) ;
  • Yuan, BaiYin (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
  • Received : 2020.04.03
  • Accepted : 2020.07.26
  • Published : 2020.08.31

Abstract

The migration, dedifferentiation, and proliferation of vascular smooth muscle cells (VSMCs) are responsible for intimal hyperplasia, but the mechanism of this process has not been elucidated. WD repeat domain 1 (WDR1) promotes actin-depolymerizing factor (ADF)/cofilin-mediated depolymerization of actin filaments (F-actin). The role of WDR1 in neointima formation and progression is still unknown. A model of intimal thickening was constructed by ligating the left common carotid artery in Wdr1 deletion mice, and H&E staining showed that Wdr1 deficiency significantly inhibits neointima formation. We also report that STAT3 promotes the proliferation and migration of VSMCs by directly promoting WDR1 transcription. Mechanistically, we clarified that WDR1 promotes the proliferation and migration of VSMCs and neointima formation is regulated by the activation of the JAK2/STAT3/WDR1 axis.

Keywords

References

  1. Allahverdian, S., Chaabane, C., Boukais, K., Francis, G.A., and Bochaton-Piallat, M.L. (2018). Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res. 114, 540-550. https://doi.org/10.1093/cvr/cvy022
  2. Bamburg, J.R. (1999). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15, 185-230. https://doi.org/10.1146/annurev.cellbio.15.1.185
  3. Bravo-Cordero, J.J., Magalhaes, M.A., Eddy, R.J., Hodgson, L., and Condeelis, J. (2013). Functions of cofilin in cell locomotion and invasion. Nat. Rev. Mol. Cell Biol. 14, 405-415. https://doi.org/10.1038/nrm3609
  4. Cervero, P., Himmel, M., Kruger, M., and Linder, S. (2012). Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur. J. Cell Biol. 91, 908-922. https://doi.org/10.1016/j.ejcb.2012.05.005
  5. Chang, Q., Bournazou, E., Sansone, P., Berishaj, M., Gao, S.P., Daly, L., Wels, J., Theilen, T., Granitto, S., Zhang, X., et al. (2013). The IL-6/JAK/Stat3 feedforward loop drives tumorigenesis and metastasis. Neoplasia 15, 848-862. https://doi.org/10.1593/neo.13706
  6. Cimica, V., Chen, H.C., Iyer, J.K., and Reich, N.C. (2011). Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-beta1. PLoS One 6, e20188. https://doi.org/10.1371/journal.pone.0020188
  7. Collazo, J., Zhu, B., Larkin, S., Martin, S.K., Pu, H., Horbinski, C., Koochekpour, S., and Kyprianou, N. (2014). Cofilin drives cell-invasive and metastatic responses to TGF-beta in prostate cancer. Cancer Res. 74, 2362-2373. https://doi.org/10.1158/0008-5472.CAN-13-3058
  8. Cooper, J.A. and Schafer, D.A. (2000). Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 12, 97-103. https://doi.org/10.1016/S0955-0674(99)00062-9
  9. Dzau, V.J., Braun-Dullaeus, R.C., and Sedding, D.G. (2002). Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat. Med. 8, 1249-1256. https://doi.org/10.1038/nm1102-1249
  10. Fu, Y., Zhao, Y., Liu, Y., Zhu, Y., Chi, J., Hu, J., Zhang, X., and Yin, X. (2012). Adenovirus-mediated tissue factor pathway inhibitor gene transfer induces apoptosis by blocking the phosphorylation of JAK-2/STAT-3 pathway in vascular smooth muscle cells. Cell. Signal. 24, 1909-1917. https://doi.org/10.1016/j.cellsig.2012.06.001
  11. Gomez, D. and Owens, G.K. (2012). Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res. 95, 156-164. https://doi.org/10.1093/cvr/cvs115
  12. Hirano, T., Ishihara, K., and Hibi, M. (2000). Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19, 2548-2556. https://doi.org/10.1038/sj.onc.1203551
  13. Hu, J., Shi, Y., Xia, M., Liu, Z., Zhang, R., Luo, H., Zhang, T., Yang, Z., and Yuan, B. (2018). WDR1-regulated actin dynamics is required for outflow tract and right ventricle development. Dev. Biol. 438, 124-137. https://doi.org/10.1016/j.ydbio.2018.04.004
  14. Huang, X., Li, Z., Hu, J., Yang, Z., Liu, Z., Zhang, T., Zhang, C., and Yuan, B. (2019). Knockout of Wdr1 results in cardiac hypertrophy and impaired cardiac function in adult mouse heart. Gene 697, 40-47. https://doi.org/10.1016/j.gene.2019.02.023
  15. Intengan, H.D. and Schiffrin, E.L. (2000). Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36, 312-318. https://doi.org/10.1161/01.HYP.36.3.312
  16. Jackson, N.M. and Ceresa, B.P. (2017). EGFR-mediated apoptosis via STAT3. Exp. Cell Res. 356, 93-103. https://doi.org/10.1016/j.yexcr.2017.04.016
  17. Johnson, D.E., O'Keefe, R.A., and Grandis, J.R. (2018). Targeting the IL-6/ JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234-248. https://doi.org/10.1038/nrclinonc.2018.8
  18. Jonasson, L., Holm, J., and Hansson, G.K. (1988). Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc. Natl. Acad. Sci. U. S. A. 85, 2303-2306. https://doi.org/10.1073/pnas.85.7.2303
  19. Kou, X., Qi, S., Dai, W., Luo, L., and Yin, Z. (2011). Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int. Immunopharmacol. 11, 1095-1102. https://doi.org/10.1016/j.intimp.2011.03.005
  20. Kovacic, J.C., Gupta, R., Lee, A.C., Ma, M., Fang, F., Tolbert, C.N., Walts, A.D., Beltran, L.E., San, H., Chen, G., et al. (2010). Stat3-dependent acute Rantes production in vascular smooth muscle cells modulates inflammation following arterial injury in mice. J. Clin. Invest. 120, 303-314. https://doi.org/10.1172/JCI40364
  21. Kumar, A. and Lindner, V. (1997). Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler. Thromb. Vasc. Biol. 17, 2238-2244. https://doi.org/10.1161/01.ATV.17.10.2238
  22. Lee, J.H., Kim, J.E., Kim, B.G., Han, H.H., Kang, S., and Cho, N.H. (2016). STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell. Signal. 28, 1753-1760. https://doi.org/10.1016/j.cellsig.2016.08.006
  23. Lee, S.H. and Dominguez, R. (2010). Regulation of actin cytoskeleton dynamics in cells. Mol. Cells 29, 311-325. https://doi.org/10.1007/s10059-010-0053-8
  24. Li, Y.L., Ding, K., Hu, X., Wu, L.W., Zhou, D.M., Rao, M.J., Lin, N.M., and Zhang, C. (2019). DYRK1A inhibition suppresses STAT3/EGFR/Met signalling and sensitizes EGFR wild-type NSCLC cells to AZD9291. J. Cell. Mol. Med. 23, 7427-7437. https://doi.org/10.1111/jcmm.14609
  25. Limagne, E., Thibaudin, M., Euvrard, R., Berger, H., Chalons, P., Vegan, F., Humblin, E., Boidot, R., Rebe, C., Derangere, V., et al. (2017). Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep. 19, 746-759. https://doi.org/10.1016/j.celrep.2017.04.004
  26. Marrero, M.B., Schieffer, B., Li, B., Sun, J., Harp, J.B., and Ling, B.N. (1997). Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and plateletderived growth factor-induced vascular smooth muscle cell proliferation. J. Biol. Chem. 272, 24684-24690. https://doi.org/10.1074/jbc.272.39.24684
  27. Marx, S.O. and Marks, A.R. (2001). Bench to bedside: the development of rapamycin and its application to stent restenosis. Circulation 104, 852-855. https://doi.org/10.1161/01.CIR.104.8.852
  28. Minakhina, S., Myers, R., Druzhinina, M., and Steward, R. (2005). Crosstalk between the actin cytoskeleton and Ran-mediated nuclear transport. BMC Cell Biol. 6, 32. https://doi.org/10.1186/1471-2121-6-32
  29. Ni, Z., Deng, J., Potter, C.M.F., Nowak, W.N., Gu, W., Zhang, Z., Chen, T., Chen, Q., Hu, Y., Zhou, B., et al. (2019). Recipient c-Kit lineage cells repopulate smooth muscle cells of transplant arteriosclerosis in mouse models. Circ. Res. 125, 223-241. https://doi.org/10.1161/CIRCRESAHA.119.314855
  30. O'Brien, E.R., Ma, X., Simard, T., Pourdjabbar, A., and Hibbert, B. (2011). Pathogenesis of neointima formation following vascular injury. Cardiovasc. Hematol. Disord. Drug Targets 11, 30-39. https://doi.org/10.2174/187152911795945169
  31. Owens, G.K., Kumar, M.S., and Wamhoff, B.R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767-801. https://doi.org/10.1152/physrev.00041.2003
  32. Qi, Z., Qi, S., Ling, L., Lv, J., and Feng, Z. (2016). Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. Int. Immunopharmacol. 35, 265-271. https://doi.org/10.1016/j.intimp.2016.04.004
  33. Schwartz, S.M., deBlois, D., and O'Brien, E.R. (1995). The intima. Soil for atherosclerosis and restenosis. Circ. Res. 77, 445-465. https://doi.org/10.1161/01.RES.77.3.445
  34. Seki, Y., Kai, H., Shibata, R., Nagata, T., Yasukawa, H., Yoshimura, A., and Imaizumi, T. (2000). Role of the JAK/STAT pathway in rat carotid artery remodeling after vascular injury. Circ. Res. 87, 12-18. https://doi.org/10.1161/01.RES.87.1.12
  35. Souissi, I., Najjar, I., Ah-Koon, L., Schischmanoff, P.O., Lesage, D., Le Coquil, S., Roger, C., Dusanter-Fourt, I., Varin-Blank, N., Cao, A., et al. (2011). A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-kappaB. BMC Cell Biol. 12, 14. https://doi.org/10.1186/1471-2121-12-14
  36. Tripathi, S.K., Chen, Z., Larjo, A., Kanduri, K., Nousiainen, K., Aijo, T., Ricano-Ponce, I., Hrdlickova, B., Tuomela, S., Laajala, E., et al. (2017). Genome-wide analysis of STAT3-mediated transcription during early human Th17 cell differentiation. Cell Rep. 19, 1888-1901. https://doi.org/10.1016/j.celrep.2017.05.013
  37. Watanabe, S., Mu, W., Kahn, A., Jing, N., Li, J.H., Lan, H.Y., Nakagawa, T., Ohashi, R., and Johnson, R.J. (2004). Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am. J. Nephrol. 24, 387-392. https://doi.org/10.1159/000079706
  38. Weintraub, W.S. (2007). The pathophysiology and burden of restenosis. Am. J. Cardiol. 100, 3K-9K. https://doi.org/10.1016/j.amjcard.2007.06.002
  39. Wu, Z., Liu, J., Hu, S., Zhu, Y., and Li, S. (2018). Serine/threonine kinase 35, a target gene of STAT3, regulates the proliferation and apoptosis of osteosarcoma cells. Cell. Physiol. Biochem. 45, 808-818. https://doi.org/10.1159/000487172
  40. Xiang, Y., Liao, X.H., Yao, A., Qin, H., Fan, L.J., Li, J.P., Hu, P., Li, H., Guo, W., Li, J.Y., et al. (2017). MRTF-A-miR-206-WDR1 form feedback loop to regulate breast cancer cell migration. Exp. Cell Res. 359, 394-404. https://doi.org/10.1016/j.yexcr.2017.08.023
  41. Xie, C., Ritchie, R.P., Huang, H., Zhang, J., and Chen, Y.E. (2011). Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler. Thromb. Vasc. Biol. 31, 1485-1494. https://doi.org/10.1161/ATVBAHA.110.221101
  42. Xie, N., Chen, M., Dai, R., Zhang, Y., Zhao, H., Song, Z., Zhang, L., Li, Z., Feng, Y., Gao, H., et al. (2017). SRSF1 promotes vascular smooth muscle cell proliferation through a Delta133p53/EGR1/KLF5 pathway. Nat. Commun. 8, 16016. https://doi.org/10.1038/ncomms16016
  43. Xu, J., Wan, P., Wang, M., Zhang, J., Gao, X., Hu, B., Han, J., Chen, L., Sun, K., Wu, J., et al. (2015). AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 6, e1818. https://doi.org/10.1038/cddis.2015.182
  44. Yuan, B., Wan, P., Chu, D., Nie, J., Cao, Y., Luo, W., Lu, S., Chen, J., and Yang, Z. (2014). A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am. J. Pathol. 184, 1967-1980. https://doi.org/10.1016/j.ajpath.2014.04.007
  45. Yuan, B., Zhang, R., Hu, J., Liu, Z., Yang, C., Zhang, T., and Zhang, C. (2018). WDR1 promotes cell growth and migration and contributes to malignant phenotypes of non-small cell lung cancer through ADF/cofilin-mediated actin dynamics. Int. J. Biol. Sci. 14, 1067-1080. https://doi.org/10.7150/ijbs.23845
  46. Zhang, L., Shao, J., Zhou, Y., Chen, H., Qi, H., Wang, Y., Chen, L., Zhu, Y., Zhang, M., Chen, L., et al. (2018). Inhibition of PDGF-BB-induced proliferation and migration in VSMCs by proanthocyanidin A2:Involvement of KDR and Jak-2/STAT-3/cPLA2 signaling pathways. Biomed. Pharmacother. 98, 847-855. https://doi.org/10.1016/j.biopha.2018.01.010
  47. Zhang, S.M., Zhu, L.H., Chen, H.Z., Zhang, R., Zhang, P., Jiang, D.S., Gao, L., Tian, S., Wang, L., Zhang, Y., et al. (2014). Interferon regulatory factor 9 is critical for neointima formation following vascular injury. Nat. Commun. 5, 5160. https://doi.org/10.1038/ncomms6160
  48. Zulkifli, A.A., Tan, F.H., Putoczki, T.L., Stylli, S.S., and Luwor, R.B. (2017). STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics. Mol. Cell. Endocrinol. 451, 15-23. https://doi.org/10.1016/j.mce.2017.01.010