• Title/Summary/Keyword: varying step size

Search Result 67, Processing Time 0.029 seconds

A Walsh-Hadamard Transform Adaptive Filter with Time-varying Step Size. (가변 스텝사이즈를 갖는 월시-아다말 변환 적응 필터)

  • 오신범;이채욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1175-1178
    • /
    • 1998
  • we propose the Walsh-Hadamard Transform adaptive filter with time-varying step size. The performance of the proposed algorithm is evealuated in system identification where computer simulations are performed for both time-invariant and time-varying system. It is shown that the proposed algorithm produces good results compared with similar algorithms under different conditions, particularly in case of time-varying circumstance.

  • PDF

A Performance Improvement of FC-MMA Blind Equalization Algorithm based on Varying Step Size (가변 스텝 크기를 적용한 FC-MMA 블라인드 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.101-106
    • /
    • 2019
  • This paper propose the VSS-FC-MMA algorithm that is possible to improve the equalization performance based on varying step size to the FC-MMA adaptive equalization algorithm in order to reducing the intersymbol interference effect occurred in the nonconstant modulus signal transmission, and improved performance were confirmed. The FC-MMA is possible to improve the convergence speed, and degrades the steady state performance based on the fixed step size and modified dispersion constant considering the level number of signal symbol for obtain the error signal in adaptive equalization compared to MMA. The proposed VSS-FC-MMA uses varying step size and current FC-MMA possible to improve the steady state equalization performance, it was confirmed by computer simulation. For this, the signal recovery capabilities and residual isi, MSE, SER were applied for performance comparison index in the same channel and signal to noise ratio. As a result of computer simulation, the proposed VSS-FC-MMA improve the risidual value in steady state and SER performance than the FC-MMA, but has 1.7 times slow convergence time by using varying step size.

Performance Evaluation of SE-MMA Adaptive Equalization Algorithm with Varying Step Size based on Error Signal's Nonlinear Transform (오차 신호의 비선형 변환을 이용한 Varying Step Size 방식의 SE-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.77-82
    • /
    • 2017
  • This paper related with the VSS_SE-MMA (Varying Step Size_Signed Error-MMA) which possible to improving the equalization performance that employing the varying adaptive step size based on the nonlinearities of error signal of SE-MMA (Signed Error-MMA), compensates the intersymbol interference by distortion occurs at the communication channel, in the transmitting the spectral efficient nonconstant modulus signal such as 16-QAM. The SE-MMA appeared to the reducing the computational arithematic operation using the polarity of error signal in the updating the tap coefficient of present MMA adaptive equalizer, but have a problem of equalization performance degradation. The VSS_SE-MMA improves the problem of such SE-MMA, using the varying step size consider the error signal in the update the adaptive equalizer tap coefficient, and its improved performance were confirmed by simulation. For this, the output signal constellation of equalizer, the residual isi and maximum distortion, MSE and SER were applied. As a result of computer simulation, it was confirmed that the VSS_SE-MMA algorithm has nearly same in convergence speed and has more good performance in every performance index at the steady state.

A Walsh-Hadamard Transform Adaptive Filter with Time-varying Step Size (가변 스텝사이즈를 적용한 월시.아다말 적응필터)

  • 오신범;이채욱
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2000
  • One of the most popular algorithm in adaptive signal processing is the least mean square(LMS) algorithm. The majority of these papers examine the LMS algorithm with a constant step size. The choice of the step size reflects a tradeoff between misadjustment and the speed of adaptation. Subsequent works have discussed the issue of optimization of the step size or methods of varying the step size to improve performance. However there is as yet no detailed analysis of a variable step size algorithm that is capable of giving both the adaptation speed and the convergence. In this paper we propose a new variable step size algorithm where the step size adjustment is controlled by the gradient of error square. The proposed algorithm is performed in the Walsh-Hadamard domain in real-valued orthogonal transform because of fast convergence. The simulation results using the new algorithm for noise canceller system is described. They are compared to the results obtained by other algorithms. It is shown that the proposed algorithm produces good results compared with conventional algorithms.

  • PDF

Adaptive Algorithm with Time-Varying Step-Size Using Orthogonality Principles

  • Park, Jung-Hoon;Son, Kyung-Sik;Park, Jang-Sik
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.46-50
    • /
    • 2001
  • Adaptive signal processing is used to acoustic echo canceller. adaptive noise canceller and adaptive algorithm among adaptive algorithms is mainly used because the structure is simple and computa LMS algorithm has trade-off between the converge speed and the steady state error. In this paper, step-size of adaptive algorithm is varied with orthogonality Principles of optimal filter to get fasts though small steady state error. Time varying step-size is determined proportional to the maximum vector of LMS algorithm. As results of simulations, the adaptive algorithm with proposed time-v compared with conventional ones.

  • PDF

An time-varying acoustic channel estimation using least squares algorithm with an average gradient vector based a self-adjusted step size and variable forgetting factor (기울기 평균 벡터를 사용한 가변 스텝 최소 자승 알고리즘과 시변 망각 인자를 사용한 시변 음향 채널 추정)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.283-289
    • /
    • 2019
  • RLS (Recursive-least-squares) algorithm is known to have good convergence and excellent error level after convergence. However, there is a disadvantage that numerical instability is included in the algorithm due to inverse matrix calculation. In this paper, we propose an algorithm with no matrix inversion to avoid the instability aforementioned. The proposed algorithm still keeps the same convergence performance. In the proposed algorithm, we adopt an averaged gradient-based step size as a self-adjusted step size. In addition, a variable forgetting factor is introduced to provide superior performance for time-varying channel estimation. Through simulations, we compare performance with conventional RLS and show its equivalency. It also shows the merit of the variable forgetting factor in time-varying channels.

New variable adaptive coefficient algorithm for variable circumstances (가변환경에 적합한 새로운 가변 적응 계수에 관한 연구)

  • 오신범;이채욱
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.3
    • /
    • pp.79-88
    • /
    • 1999
  • One of the most popular algorithm in adaptive signal processing is the least mean square(LMS) algorithm. The majority of these papers examine the LMS algorithm with a constant step size. The choice of the step size reflects a tradeoff between misadjustment and the speed of adaptation. Subsequent works have discussed the issue of optimization of the step size or methods of varying the step size to improve performance. However there is as yet no detailed analysis of a variable step size algorithm that is capable of giving both the speed of adaptation and convergence. In this paper we propose a new variable step size algorithm where the step size adjustment is controlled by square of the prediction error. The simulation results obtained using the new algorithm about noise canceller system and system identification are described. They are compared to the results obtained for other variable step size algorithm. function.

  • PDF

Step-Size Control for Width Adaptation in Radial Basis Function Networks for Nonlinear Channel Equalization

  • Kim, Nam-Yong
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.600-604
    • /
    • 2010
  • A method of width adaptation in the radial basis function network (RBFN) using stochastic gradient (SG) algorithm is introduced. Using Taylor's expansion of error signal and differentiating the error with respect to the step-size, the optimal time-varying step-size of the width in RBFN is derived. The proposed approach to adjusting widths in RBFN achieves superior learning speed and the steady-state mean square error (MSE) performance in nonlinear channel environment. The proposed method has shown enhanced steady-state MSE performance by more than 3 dB in both nonlinear channel environments. The results confirm that controlling over step-size of the width in RBFN by the proposed algorithm can be an effective approach to enhancement of convergence speed and the steady-state value of MSE.

A Variable Step Size LMS Algorithm Using Normalized Absolute Estimation Error

  • Kim, D. W.;S. H. Han;H. K. Hong;H. B. Kang;Park, J. S.
    • Journal of Electrical Engineering and information Science
    • /
    • v.1 no.2
    • /
    • pp.119-124
    • /
    • 1996
  • Variable step size LMS(VS-LMS) algorithms improve performance of LMS algorithm by means of varying the step size. This paper presents a new VS-LMS algorithm using normalized absolute estimation error. Normalizing the estimation error to the expected valus of the desired signal, we determined the step size using the relative size of estimation error, Because parameters and computational load are less, our algorithm is easy to implement in hardware. The performance of the proposed algorithm is analyzed theoretically and estimated through simulations. Based on the theoretical analysis and computer simulations, the proposed algorithm is shown to be effective compared to conventional VS-LMS algorithms.

  • PDF

Modified Asymmetrical Variable Step Size Incremental Conductance Maximum Power Point Tracking Method for Photovoltaic Systems

  • Tian, Yong;Xia, Bizhong;Xu, Zhihui;Sun, Wei
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.156-164
    • /
    • 2014
  • The power-voltage (P-V) characteristic of a photovoltaic (PV) array is nonlinear and time varying with the change in atmospheric conditions. As a result, the maximum power point tracking (MPPT) technique must be applied in PV systems to maximize the generated energy. The incremental conductance (INC) algorithm, one of the MPPT strategies, is widely used for its high tracking accuracy, good adaptability to rapidly changing atmospheric conditions, and easy implementation. This paper presents a modified asymmetrical variable step size INC MPPT method that is based on the asymmetrical feature of the P-V curve. Compared with conventional fixed or variable step size method, the proposed method can effectively improve tracking accuracy and speed. The theoretical foundation and design principle of the proposed approach are validated by the simulation and experimental results.