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Step-Size Control for Width Adaptation in Radial Basis
Function Networks for Nonlinear Channel Equalization

Namyong Kim

Abstract: A method of width adaptation in the radial basis function
network (RBFN) using stochastic gradient (SG) algorithm is intro-
duced. Using Taylor’s expansion of error signal and differentiating
the error with respect to the step-size, the optimal time-varying
step-size of the width in RBFN is derived. The proposed approach
to adjusting widths in RBFN achieves superior learning speed and
the steady-state mean square error (MSE) performance in non-

linear channel environment. The proposed method has shown en- -

hanced steady-state MSE performance by more than 3 dB in both
nonlinear channel environments. The results confirm that control-
ling over step-size of the width in RBFN by the proposed algorithm
can be an effective approach to enhancement of convergence speed
and the steady-state value of MSE.

Index Terms: Equalization, nonlinear channel, radial basis func-
tion network (RBFN), step-size, stochastic gradient (SG), width.

1. INTRODUCTION

The performance of radial basis function network (RBFN)
is highly dependent on the choice of parameters of the RBFN.
In [1], a simple learning algorithm that simultaneously adapts all
the network parameters- centers, widths, and weights was pro-
posed. The algorithm applies stochastic-gradient (SG) method
to the RBF parameter adaptation. This RBFN-stochastic gradi-
ent (SG) algorithm has proved superior to many of the existing
algorithms, with less computational requirements in nonlinear
channel equalization applications [2]. Recently, the RBFN-SG
has also been applied to odor identification problems for future
multimedia systems equipped with odor sensors [3]. Another
hybrid training algorithm [4] has been introduced that adapts
the parameters using gradient descent procedure while employ-
ing singular value decomposition to compute the optimum lin-
ear weights at each iteration. The authors in the paper pointed
that due to high sensitivity of the widths, the widths appear a
major source of ill-conditioning in RBF networks. The width of
a node controls the shape of the basis function or the response
of the associated node of the RBFN. In learning process, the
width measures the extent to which neighbor centers near the
node concerned participate in the learning process [5]. Large
or small values make the node response too flat or too peaked,
respectively, and, therefore, both of these two extreme condi-
tions should be avoided. In differential equation applications, N,
May-Duy and T. Tran-Cong [6] adjusted the width as the only
adjustable parameter according to the rule that a larger width is
assigned where the centers are widely separated from each other
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and a smaller width where the centers are closer. In contrast to
the approach taken by other authors as reviewed above, in the
present method the width is updated by gradient descent method
employing time-varying step-size at each iteration. The learn-
ing speed of the algorithms using stochastic-gradient descent
method is dependent on the step-size. Our basic idea is that if we
force the slope of the squared error with respect to the step-size
to get close to zero, the optimum step-size for the widths of the
RBFN-SG algorithm can be obtained and we can acquire more
accurate width values and faster convergence speed. In this pa-
per, we introduce a method of width adaptation in the RBFN-SG
algorithm by applying the Taylor’s expansion approach to error
signal and differentiating it with respect to the step-size in or-
der to obtain optimal time-varying step-size for the widths. Two
common nonlinear channel models have been simulated to show
that the proposed method performs better than the RBFN-SG al-
gorithm.

This paper is organized as follows. In Section 11, we briefly
describe RBFN-SG algorithm. The optimal time-varying step-
size of the width in RBFN-SG method is proposed in Section IIL
Section 1V reports simulation results and discussions. Finally,
concluding remarks are presented in Section V.

II. RBFN-SG ALGORITHM FOR NETWORK
PARAMETER ADAPTATION

The RBFN-SG algorithm adapts all the free parameters of the
network using gradient descent of the instantaneous output error
power. Input vector having L elements is defined as

o™ = [z(n) z(n—1)--- z(n — L+ 1)]7. (1)

Let the error be denoted by e(™ = d(™® — y(™) where d™)

is desired output and y(™ is the RBFN output, all at the training

time n. For a network parameter ¢, the RBFN-SG algorithm
adapts its value ¢(™ at time n according to

el

e @

U = ¢ — g
where pyg is the convergence coefficient or step-size. Among lo-
calized basis functions, the Gaussian is the most popular choice
for RBFN-SG. The output of RBFN-SG with M Gaussian basis
functions is
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In the RBFN-SG algorithm, the center, width, and weight of
hidden unit j at time n, are adapted according to the following
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equations [2]
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where i, i, and p,, are step-sizes that control the speed of
adaptation. Using firstly Taylor’s expansion of error signal and
then differentiating it with respect to the widths, u,, a method of
obtaining optimum step-size value for the widths can be derived
as described in the following section.

1L STEP-SIZE CONTROL FOR WIDTH ADAPTATION

Defining the activation level of hidden unit j at time »n as

2
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the width adaptation (5) becomes
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Using the difference (9) between the two consecutive time
indexes, we can write ("1 as a Taylor’s expansion of e("),
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The second term in (10) can be rewritten as E;‘il %/ 805-")
~{Aa§")]2 and it can be negligible in the steady state.
Substituting (9), (11), and (12) into (10) yields
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By differentiating (14) with respect to f¢,, we can obtain
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Letting (15) be equal to zero yields the optimum time-varying
convergence coefficient, ugm.
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When the denominator of (16) is too small, numerical difficul-
ties may arise because then the step-size for the widths becomes
big enough to diverge. To overcome this kind of problem, (16)
is slightly modified as follows
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2 <)H

a7

o

% W O

where constant a > 0. This modification using a small positive
constant to avoid numerical problems for small node signals can
also be referred in [7].

Consequently, the width which is the major parameter that
affects the performance, is updated according to the following
rule for the hidden unit 7 at time n.
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Fig. 1. Schematic of RBFN equalizer for L = 2.

The time-varying convergence coefficient * ( ) governs sta-
bility and rate of convergence. It is necessary to evaluate
whether (17) is in the range of stability by extractlng the sta-
bility condition of (13).

From (13),
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Starting with the initial guess e(?), we obtain the nth error (™
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The result in (20) shows that the proposed algorithm is stable
and convergent when
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This condition can be also expressed as
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By comparing the proposed convergence coefficient, *,ugn) in

(17) with (23), it is apparent that * u(")satisﬁes the stability con-
dition.

IV. RESULTS AND DISCUSSION

In this section, we present simulation results and discussion
for nonlinear channel equalization using the linear tapped de-
lay line (TDL) equalizer structure and nonlinear RBFN for per-
formance comparison. The RBFN equalizer we considered is

Steady-state MSE (dB)
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Fig. 2. Minimum MSE performance with respect fo the constant a.

depicted in Fig. 1. The performance is measured by the mean-
squared-error (MSE) between the equalizer output and the cor-
rect symbols. The transmitted training symbol is a random
sequence of bipolar signals (+1,—1). The initial centers are
formed from the first few successive channel output samples
of the training set. The RBFN weights are initialized to zeros.
The additive white Gaussian noise v(™ has zero mean, vari-
ance 0.001. The equalizer input dimension is set to L = 2 and
the initial common values of the spread parameter, width, were
O'J(-O) = 2 for all j. We set this initial width value based on a
consideration of the distance between the two transmitted sym-
bol values. As in [2], we also have found that the performance
is rather robust to variation over a significant range of values
for the initial width. The RBFN equalizer has 30 hidden nodes
(M = 30). The values of step-size for RBFN-SG are all 0.05
with no momentum. Constant a for the proposed method is set
to 0.7. The TDL equalizer structure with the least mean square
(LMS) algorithm, referred to as TDL-LMS in this paper, has 30
taps and its step-size is also the same 0.05. The TDL structure
can be replaced in stead of the RBFN structure in Fig. 1 for lin-
ear equalizer performance evaluation. For learning performance
comparison, nonlinear channel environment described in [8] is
used. The nonlinear channel 1 for the first simulation is given by

z(n) = h™ — 0.9h(™° 4 y(™),

24
A = g™ 4 0.5, 9

To investigate the effect of the constant a on the equalizer per-
formance, minimum MSE is depicted for different values rang-
ing from O to 6 under channel 1 environment in Fig. 2. The curve
of minimum MSE with respect to the constant @ is concave and
the optimum value a can be obtained at the saddle point that
makes the algorithm converge and produces the lowest steady-
state MSE. The optimum point in Fig. 2 justifies our choice of
0.7 for the constant a. As the constant a increases, we see the
proposed algorithm becomes the conventional RBFN-SG algo-
rithm which uses a constant step-size.

The convergence of the various equalizers for nonlinear chan-
nel 1 is shown in Fig. 3. It can be seen that the linear equal-
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Fig. 3. MSE learning performance for nonlinear channel 1.
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Fig. 4. MSE learning performance for nonlinear channel 2.

izer, TDL-LMS performs very poorly due to the nonlinearity of
the channel. All the RBFN equalizers have given better perfor-
mance than the linear equalizer. Most impressive is the superi-
ority of the proposed RBFN equalizer to RBFN-SG. It is partic-
ularly noteworthy that more accurate width values can improve
the RBFN performance significantly.

To verify the results of enhanced performance, we performed
the simulation for another nonlinear channel model. The second
simulation is with the nonlinear channel 2 [9] as follows

z(n) = ™ 4+ 0.10™° +0.050™° + ™),

R = 0.5d) + g1, @

Fig. 4 shows that the proposed RBFN equalizer has faster
learning performance than the linear TDL-LMS and RBEN-SG
equalizer. From the results depicted in Fig. 3 and 4, it can also
be observed that the difference between the steady-state MSE
values of the RBFN-SG and that of the proposed method ex-
ceeds 3 dB in both cases. The results confirm that controlling
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Fig. 5. BER performance with respect to E;,/N,.

over step-size of the width in RBFN has significant effects on
convergence speed as well as the steady-state value of MSE.

To give simulation results for more severe noise case, we have
given the bit error ratio (BER) performance comparisons versus
signal-to-noise ratio by increasing the variance of the noise. In
general, nonlinear equalizers with lower MSE do not always re-
flect the lower BER. In the simulation results shown in Fig. 5, we
have a similar phenomenon. The proposed algorithm gives only
small BER performance enhancement in both channel environ-
ments. For error rate 10~¢, about 1 dB gain can be obtained but
in the region of bigger noise variances, below 15 dB of E}, /N,
two algorithms have almost the same BER performance.

The optimum step-size approach to the width parameter of
RBFN can be considered to be extended to center and weight.
From our results of applying this technique to all the RBFN pa-
rameters, we could not get considerably better performance than
only the width. This implies that the width appears a major pa-
rameter that controls the convergence performance in RBF net-
works as described in Section L.

V. CONCLUSION

In this paper, we introduce a new method of width adaptation
for the RBFN-SG algorithm by applying the Taylor’s expansion
approach to error signal and differentiating it with respect to the
step-size in order to obtain optimal time-varying step-size for
the widths in RBFEN. The proposed approach to adjusting widths
in RBEN can achieve superior learning performance in nonlin-
ear channel environments. In the aspect of the steady-state MSE
performance, the proposed method has shown increased perfor-
mance by more than 3 dB, but in the aspect of BER performance,
the proposed algorithm gives only small BER performance en-
hancement. The results confirm that controlling over step-size
of the width in RBFN by the proposed algorithm gives small
BER enhancement but has significant effects on convergence
speed. This superior performance indicates that the proposed
method for width adaptation can be a promising candidate for
RBFN nonlinear channel equalization applications that require
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