• 제목/요약/키워드: various loadings

검색결과 328건 처리시간 0.025초

다양한 형태의 보강섬유 굴곡을 가지는 두꺼운 복합재료의 인장/압축 하중 하에서의 응력/변형률 분포 (Stress and Strain Distribution of Thick Composites with Various Types of Fiber Waviness under Tensile and Compressive Loadings)

  • 신재윤;이승우;전흥재
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.97-100
    • /
    • 2000
  • A FEA(finite element analysis) model was proposed to study stress and strain distributions in thick composites with various types of fiber waviness under tensile and compressive loadings. Three types of model were considered in this study: uniform fiber waviness, graded fiber waviness and localized fiber waviness models. In the analysis, both material and geometrical nonlinearities due to fiber waviness were incorporated into the model utilizing energy density and incremental method. The strain distributions of uniform fiber waviness model were strongly influenced whereas the stress distributions were little influenced by fiber waviness. The stress and strain distributions of graded and localized fiber waviness models showed more complex distributions than those of uniform fiber waviness model due to the variation of fiber waviness along the thickness and length directions. It was concluded that the stress and strain distributions of composites with fiber waviness were significantly affected by types of fiber waviness.

  • PDF

Simulation on Long-term Operation of an Anaerobic Bioreactor for Korean Food Wastes

  • Choi, Dong Won;Lee, Woo Gi;Lim, Seong Jin;Kim, Byung Jin;Chang, Ho Nam;Chang, Seung Teak
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권1호
    • /
    • pp.23-31
    • /
    • 2003
  • A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of Solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5C in winter to 25C in Summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation .

Thermo-mechanical vibration analysis of functionally graded micro/nanoscale beams with porosities based on modified couple stress theory

  • Ebrahimi, Farzad;Mahmoodi, Fateme;Barati, Mohammad Reza
    • Advances in materials Research
    • /
    • 제6권3호
    • /
    • pp.279-301
    • /
    • 2017
  • Thermo-mechanical vibration characteristics of in homogeneousporous functionally graded (FG) micro/nanobeam subjected to various types of thermal loadings are investigated in the present paper based on modified couple stress theory with consideration of the exact position of neutral axis. The FG micro/nanobeam is modeled via a refined hyperbolic beam theory in which shear deformation effect is verified needless of shear correction factor. A modified power-law distribution which contains porosity volume fraction is used to describe the graded material properties of FG micro/nanobeam. Temperature field has uniform, linear and nonlinear distributions across the thickness. The governing equations and the related boundary conditions are derived by Extended Hamilton's principle and they are solved applying an analytical solution which satisfies various boundary conditions. A comparison study is performed to verify the present formulation with the known data in the literature and a good agreement is observed. The parametric study covered in this paper includes several parameters such as thermal loadings, porosity volume fraction, power-law exponents, slenderness ratio, scale parameter and various boundary conditions on natural frequencies of porous FG micro/nanobeams in detail.

액상 에폭시 수지와 마이크로/나노 하이브리드 실리카 혼합물의 점도 예측 (Prediction of Viscosity in Liquid Epoxy Resin Mixed with Micro/Nano Hybrid Silica)

  • 황광춘;이충희;이종근
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.100-105
    • /
    • 2011
  • The relative viscosity was measured at different filler loadings for a cycloaliphatic epoxy resin and hexahydro-4-methylphthalic anhydride hardener system filled with micro/nano hybrid silica. Various empirical models were fitted to the experimental data and a fitting parameter such as critical filler fractions (${\phi}_{max}$) was estimated. Among the models, the Zhang-Evans model gave the best fit to the viscosity data. For all the silica loadings used, ln (relative viscosity) varied linearly with filler loadings. Using the Zhang-Evans model and the linearity characteristics of the viscosity change, simple methods to predict the relative viscosity below ${\phi}_{max}$ are presented in this work. The predicted viscosity values from the two methods at hybrid silica fractions of $\phi$ = 0.086 and 0.1506 were confirmed for a micro:nano = 1:1 hybrid filler. As a result, the difference between measured and predicted values was less than 11%, indicating that the proposed predicting methods are in good agreement with the experiment.

Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment

  • Ebrahimi, Farzad;Daman, Mohsen
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.121-133
    • /
    • 2017
  • This paper proposes an analytical solution method for free vibration of curved functionally graded (FG) nonlocal beam supposed to different thermal loadings, by considering porosity distribution via nonlocal elasticity theory for the first time. Material properties of curved FG beam are assumed to be temperature-dependent. Thermo-mechanical properties of porous FG curved beam are supposed to vary through the thickness direction of beam and are assumed to be temperature-dependent. Since variation of pores along the thickness direction influences the mechanical and physical properties, porosity play a key role in the mechanical response of curved FG structures. The rule of power-law is modified to consider influence of porosity according to even distribution. The governing equations of curved FG porous nanobeam under temperature field are derived via the energy method based on Timoshenko beam theory. An analytical Navier solution procedure is used to achieve the natural frequencies of porous FG curved nanobeam supposed to thermal loadings with simply supported boundary condition. The results for simpler states are confirmed with known data in the literature. The effects of various parameters such as nonlocality, porosity volume fractions, type of temperature rising, gradient index, opening angle and aspect ratio of curved FG porous nanobeam on the natural frequency are successfully discussed. It is concluded that these parameters play key roles on the dynamic behavior of porous FG curved nanobeam. Presented numerical results can serve as benchmarks for future analyses of curve FG nanobeam with porosity phases.

광촉매 TiO2의 반응활성 비교 . 평가 기준에 관한 연구 (A Study on Comparison and Evaluation Standard of Photocatalytic Activity for Commercial TiO2)

  • 이상진;홍성창
    • 한국환경과학회지
    • /
    • 제17권7호
    • /
    • pp.801-808
    • /
    • 2008
  • This study was investigated experimental condition which is able to evaluate photocatalytic activity of various commercial $TiO_2$. The experiments were performed for three representative substances (ethanol, phenol and methylene blue) and four kinds of commercial $TiO_2$, under the experimental conditions such as pH, reactant concentration, amount of $TiO_2$, reaction time and UV intensity. The optimum experimental conditions to evaluate photocatalytic activity were as follows : for ethanol, the initial concentration 1000 ppm, initial pH 8, $TiO_2$ loadings 0.1 wt%, and reaction time 90 minutes: for phenol, the initial concentration 200 ppm, initial pH 8, $TiO_2$ loadings 1 wt%, and reaction time 60 minutes: for methylene blue, the initial concentration 200 ppm, initial pH 4, $TiO_2$ loadings 0.5 wt%, and reaction time 30 minutes.

가력하중을 통한 CST30제진댐퍼시스템의 구조성능 평가 (Structural Performance Evaluation of VES Damper System subjected to Cyclic Loadings(CST30))

  • 김대훈;이동규;이기학
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.61-68
    • /
    • 2015
  • The performance enhancement of various structural building systems from natural hazards has become an inctreasingly important issue in engineering field. In this paper, visco-elastic(VE) CST30 damping systems were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. Main test variables are relative shear stiffness, rate of loading frequency, and thickness of specimens to evaluate the seismic capacity based on the performance criteria. This experiment was performed using a total of 12 specimens, subjected to cyclic loadings up to a shear deformation of 500%. All the CST30 dampers provided a ductile and stable hysterestic behavior when subjected to the demands of large shear stiffness and different loading frequencies. The test results showed that the CST30 dampers are an effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings.

Application of cohesive zone model to large scale circumferential through-wall and 360° surface cracked pipes under static and dynamic loadings

  • Moon, Ji-Hee;Jang, Youn-Young;Huh, Nam-Su;Shim, Do-Jun;Park, Kyoungsoo
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.974-987
    • /
    • 2021
  • This paper presents ductile fracture simulation of full-scale cracked pipe for nuclear piping materials using the cohesive zone model (CZM). The main objective of this study is to investigate the applicability of CZM to predict ductile fracture of cracked pipes with various crack shapes and under quasi-static/dynamic loadings. The transferability of the traction-separation (T-S) curve from a small-scale specimen to a full-scale pipe is demonstrated by simulating small- and full-scale tests. T-S curves are calibrated by comparing experimental data of compact tension specimens with finite element analysis results. The calibrated T-S curves are utilized to predict the fracture behavior of cracked pipes. Three types of full-scale pipe tests are considered: pipe with circumferential through-wall crack under quasistatic/dynamic loadings, and with 360° internal surface crack under quasi-static loading. Computational results using the calibrated T-S curves show a good agreement with experimental data, demonstrating the transferability of the T-S curves from small-scale specimen.

SWAT을 이용한 AR5 기후변화 시나리오에 의한 섬진강 요천유역의 유량 및 오염부하량 변화 예측 (Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWA)

  • 장유진;박종태;서동일
    • 상하수도학회지
    • /
    • 제32권3호
    • /
    • pp.221-233
    • /
    • 2018
  • Two climate change scenarios, the RCP (Representative Concentration Pathways) 4.5 and the RCP 8.5 in the fifth Assessment Report (AR5) by Intergovernmental Panel on Climate Change (IPCC), were applied in the Yocheon basin area using the SWAT (Soil and Water Assessment Tool) model to estimate changes in flow rates and pollutant loadings in the future. Field stream flow rate data in Songdong station and water quality data in Yocheon-1 station between 2013~2015 were used for model calibration. While $R^2$ value of flow rate calibration was 0.85 and $R^2$ value of water qualities were in the 0.12~0.43 range. The total study period was divided into 4 sub periods as 2030s (2016~2040), 2050s (2041~2070) and 2080s (2071~2100). The predicted results of flow rates and water quality concentrations were compared with results in calibrated periods, 2015s (2013~2015). In both RCP scenarios, flow rate and TSS (Total Suspended Solid) loadings were estimated to be in increasing trend while TN (Total Nitrogen) and TP (Total Phosphorus) loadings showed decreasing patterns. Also, flow rates and pollutant loadings showed larger differences between the maximum and the minimum values in RCP 4.5 than RCP 8.5 scenarios indicating more severe effect of drought and flood, respectively. Dependent on simulation period and rainfall periods in a year, flow rate, TSS, TN and TP showed different trends in each scenario. This emphasizes importance of considerations on time and space when analyzing climate change impacts of each variable under various scenarios.

Fick 확산 모형을 이용한 하상 굴착 공사로부터의 부유물질 농도 산정 (Estimation of Suspended Solids Concentration Caused by Stream Bed Excavation Works through the Application of the Fickian Diffusion Model)

  • 안명길
    • 한국수자원학회논문집
    • /
    • 제30권6호
    • /
    • pp.621-628
    • /
    • 1997
  • 하상 굴착 공사는 골재 채취, 토사준설, 교량 건설 또는 하천을 횡단하여 매설하는 관로 공사 등 여러 가지 경우에 이루어지고 있다. 이러한 하상 굴착 공사 과정에서 발생하는 다량의 부유물질(SS)은 수질을 오염시키며 환경에 악영향을 미치게 된다. 본 논문에서는 현장 여건상 정교한 수치해석모형을 적용할 수 없는 경우에, 2차원 이송-확산 모형을 단순화하여 유도한 Fick 확산 모형에 의하여 부유물질의 농도를 산정하고 오탁 방지 시설 설치에 따른 부유물질 농도의 저감 효과를 평가하는 방법을 검토하였다. 강원도 동해시에 위치한 전천의 송유관로 매설공사를 대상으로, Fick 확산 모형이 하상 굴착으로부터 발생하는 부유물질의 농도 산정과 오탁방지막의 설치에 따른 오염 저감 효과를 사전에 예비적으로 평가하는 실무적인 방법이 될 수 있음을 제시하였다.

  • PDF