• Title/Summary/Keyword: variational systems

Search Result 124, Processing Time 0.024 seconds

The Characteristics and Predictability of Convective System Based on GOES-9 Observations during the Summer of 2004 over East Asia (정지기상위성의 밝기온도로 분석한 2004년 동아시아지역에서 발생한 여름철 대류 시스템의 특성과 그 예측 가능성)

  • Baek, Seon-Kyun;Choi, Young-Jean;Chung, Chu-Yong;Cho, Chun-Ho
    • Atmosphere
    • /
    • v.16 no.3
    • /
    • pp.225-234
    • /
    • 2006
  • Convective systems propagate eastward with a persistent pattern in the longitude-time space. The characteristic structure and fluctuation of convective system is helpful in determining its predictability. In this study, convective index (CI) was defined as a difference between GOES-9 window and water vapor channel brightness temperatures following Mosher (2001). Then the temporal-spatial scales and variational characteristics of the summer convective systems in the East Asia were analyzed. It is found that the average moving speed of the convective system is about 14 m/s which is much faster than the low pressure system in the summer. Their average duration is about 12 hours and the average length of the cloud streak is about 750km. These characteristics are consistent with results from other studies. Although the convective systems are forced by the synoptic system and are mostly developed in the eastern edge of the Tibetan Plateau, they have a persistent pattern, i.e., appearance of the maximum intensity of convective systems, as they approach the Korean Peninsula. The consistency of the convective systems, i.e., the eastward propagation, suggests that there exists an intrinsic predictability.

Out of plane vibrations of thin-walled curved beams considering shear flexibility

  • Cortinez, V.H.;Piovan, M.T.;Rossi, R.E.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.3
    • /
    • pp.257-272
    • /
    • 1999
  • In this paper a simple finite element is proposed for analyzing out of plane vibration of thin walled curved beams, with both open and closed sections, considering shear flexibility. The present element is obtained from a variational formulation governing the dynamics of a three-dimensional elastic body in which the stress tensor as well as the displacements are variationally independent. The element has two nodes with four degrees of freedom in each. Numerical examples for the first six frequencies are performed in order to assess the accuracy of the finite element formulation and to show the influence of the shear flexibility on the dynamics of the member.

Basis Set Requirement for Small Components Besides Kinetic Balance in Relativistic Self-Consistent-Field Calculations of Many Electron Systems

  • Lee, Yoon-Sup;Baeck, Kyoung-Koo
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.428-433
    • /
    • 1986
  • It is demonstrated by using a highly positive uranium ion as a test case that the exact relation between the small and the large components of a Dirac spinor in relativistic self-consistent-field (RSCF) calculations is not fully satisfied by the kinetic balance condition only even for two electron systems. For a fixed number of large component basis functions, total energies are sensitive to the change of the size of the small component basis sets even after the kinetic balance condition is fully satisfied. However, the kinetic balance condition appears to be a reasonable guideline in generating reliable and practical basis sets for most applications of RSCF calculations. With a complete small component basis set, energies from RSCF calculations exhibit a variational behavior, implying the stability of the present RSCF procedure.

INFINITELY MANY HOMOCLINIC SOLUTIONS FOR DAMPED VIBRATION SYSTEMS WITH LOCALLY DEFINED POTENTIALS

  • Selmi, Wafa;Timoumi, Mohsen
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.693-703
    • /
    • 2022
  • In this paper, we are concerned with the existence of infinitely many fast homoclinic solutions for the following damped vibration system $$(1){\hspace{32}}{\ddot{u}}(t)+q(t){\dot{u}}(t)-L(t)u(t)+{\nabla}W(t,u(t))=0,\;{\forall}t{\in}{\mathbb{R}},$$ where q ∈ C(ℝ, ℝ), L ∈ C(ℝ, ${\mathbb{R}}^{N^2}$) is a symmetric and positive definite matix-valued function and W ∈ C1(ℝ×ℝN, ℝ). The novelty of this paper is that, assuming that L is bounded from below unnecessarily coercive at infinity, and W is only locally defined near the origin with respect to the second variable, we show that (1) possesses infinitely many homoclinic solutions via a variant symmetric mountain pass theorem.

Shape Design Optimization of Fluid-Structure Interaction Problems (유체-구조 연성 문제의 형상 최적설계)

  • Ha, Yoon-Do;Kim, Min-Geun;Cho, Hyun-Gyu;Cho, Seon-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.130-138
    • /
    • 2007
  • A coupled variational equation for fluid-structure interaction (FSI) problems is derived from a steady state Navier-Stokes equation for incompressible Newtonian fluid and an equilibrium equation for geometrically nonlinear structures. For a fully coupled FSI formulation, between fluid and structures, a traction continuity condition is considered at interfaces where a no-slip condition is imposed. Under total Lagrange formulation in the structural domain, finite rotations are well described by using the second Piola-Kirchhoff stress and Green-Lagrange strain tensors. An adjoint shape design sensitivity analysis (DSA) method based on material derivative approach is applied to the FSI problem to develop a shape design optimization method. Demonstrating some numerical examples, the accuracy and efficiency of the developed DSA method is verified in comparison with finite difference sensitivity. Also, for the FSI problems, a shape design optimization is performed to obtain a maximal stiffness structure satisfying an allowable volume constraint.

Analysis of Forecast Performance by Altered Conventional Observation Set (종관 관측 자료 변화에 따른 예보 성능 분석)

  • Han, Hyun-Jun;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Lee, Sihye;Lim, Sujeong;Kim, Taehun
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.21-39
    • /
    • 2019
  • The conventional observations of the Korea Meteorological Administration (KMA) and National Centers for Environmental Prediction (NCEP) are compared in the numerical weather forecast system at the Korea Institute of Atmospheric Prediction Systems (KIAPS). The weather forecasting system used in this study is consists of Korea Integrated Model (KIM) as a global numerical weather prediction model, three-dimensional variational method as a data assimilation system, and KIAPS Package for Observation Processing (KPOP) as an observation pre-processing system. As a result, the forecast performance of NCEP observation was better while the number of observation is similar to the KMA observation. In addition, the sensitivity of forecast performance was investigated for each SONDE, SURFACE and AIRCRAFT observations. The differences in AIRCRAFT observation were not sensitive to forecast, but the use of NCEP SONDE and SURFACE observations have shown better forecast performance. It is found that the NCEP observations have more wind observations of the SONDE in the upper atmosphere and more surface pressure observations of the SURFACE in the ocean. The results suggest that evenly distributed observations can lead to improved forecast performance.

Free vibration analysis of large sag catenary with application to catenary jumper

  • Klaycham, Karun;Nguantud, Panisara;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.67-86
    • /
    • 2020
  • The main goal of this study is to investigate the free vibration analysis of a large sag catenary with application to the jumper in hybrid riser system. The equation of motion is derived by using the variational method based on the virtual work principle. The finite element method is applied to evaluate the numerical solutions. The large sag catenary is utilized as an initial configuration for vibration analysis. The nonlinearity due to the large sag curvature of static configuration is taken into account in the element stiffness matrix. The natural frequencies of large sag catenary and their corresponding mode shapes are determined by solving the eigenvalue problem. The numerical examples of a large sag catenary jumpers are presented. The influences of bending rigidity and large sag shape on the free vibration behaviors of the catenary jumper are provided. The results indicate that the increase in sag reduces the jumper natural frequencies. The corresponding mode shapes of the jumper with large sag catenary shape are comprised of normal and tangential displacements. The large sag curvature including in the element stiffness matrix increases the natural frequency especially for a case of very large sag shape. Mostly, the mode shapes of jumper are dominated by the normal displacement, however, the tangential displacement significantly occurs around the lowest point of sag. The increase in degree of inclination of the catenary tends to increase the natural frequencies.

Comparative Analysis of Self-supervised Deephashing Models for Efficient Image Retrieval System (효율적인 이미지 검색 시스템을 위한 자기 감독 딥해싱 모델의 비교 분석)

  • Kim Soo In;Jeon Young Jin;Lee Sang Bum;Kim Won Gyum
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.519-524
    • /
    • 2023
  • In hashing-based image retrieval, the hash code of a manipulated image is different from the original image, making it difficult to search for the same image. This paper proposes and evaluates a self-supervised deephashing model that generates perceptual hash codes from feature information such as texture, shape, and color of images. The comparison models are autoencoder-based variational inference models, but the encoder is designed with a fully connected layer, convolutional neural network, and transformer modules. The proposed model is a variational inference model that includes a SimAM module of extracting geometric patterns and positional relationships within images. The SimAM module can learn latent vectors highlighting objects or local regions through an energy function using the activation values of neurons and surrounding neurons. The proposed method is a representation learning model that can generate low-dimensional latent vectors from high-dimensional input images, and the latent vectors are binarized into distinguishable hash code. From the experimental results on public datasets such as CIFAR-10, ImageNet, and NUS-WIDE, the proposed model is superior to the comparative model and analyzed to have equivalent performance to the supervised learning-based deephashing model. The proposed model can be used in application systems that require low-dimensional representation of images, such as image search or copyright image determination.

Data Assimilation of Aeolus/ALADIN Horizontal Line-Of-Sight Wind in the Korean Integrated Model Forecast System (KIM 예보시스템에서의 Aeolus/ALADIN 수평시선 바람 자료동화)

  • Lee, Sihye;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Seol, Kyung-Hee;Jeong, Han-Byeol;Kim, Won-Ho
    • Atmosphere
    • /
    • v.32 no.1
    • /
    • pp.27-37
    • /
    • 2022
  • The Korean Integrated Model (KIM) forecast system was extended to assimilate Horizontal Line-Of-Sight (HLOS) wind observations from the Atmospheric Laser Doppler Instrument (ALADIN) on board the Atmospheric Dynamic Mission (ADM)-Aeolus satellite. Quality control procedures were developed to assess the HLOS wind data quality, and observation operators added to the KIM three-dimensional variational data assimilation system to support the new observed variables. In a global cycling experiment, assimilation of ALADIN observations led to reductions in average root-mean-square error of 2.1% and 1.3% for the zonal and meridional wind analyses when compared against European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) analyses. Even though the observable variable is wind, the assimilation of ALADIN observation had an overall positive impact on the analyses of other variables, such as temperature and specific humidity. As a result, the KIM 72-hour wind forecast fields were improved in the Southern Hemisphere poleward of 30 degrees.

MULTIPLICITY RESULTS FOR NONLINEAR SCHRÖDINGER-POISSON SYSTEMS WITH SUBCRITICAL OR CRITICAL GROWTH

  • Guo, Shangjiang;Liu, Zhisu
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.247-262
    • /
    • 2016
  • In this paper, we consider the following $Schr{\ddot{o}}dinger$-Poisson system: $$\{\begin{array}{lll}-{\Delta}u+u+{\lambda}{\phi}u={\mu}f(u)+{\mid}u{\mid}^{p-2}u,\;\text{ in }{\Omega},\\-{\Delta}{\phi}=u^2,\;\text{ in }{\Omega},\\{\phi}=u=0,\;\text{ on }{\partial}{\Omega},\end{array}$$ where ${\Omega}$ is a smooth and bounded domain in $\mathbb{R}^3$, $p{\in}(1,6]$, ${\lambda}$, ${\mu}$ are two parameters and $f:\mathbb{R}{\rightarrow}\mathbb{R}$ is a continuous function. Using some critical point theorems and truncation technique, we obtain three multiplicity results for such a problem with subcritical or critical growth.