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Abstract. In this paper, we are concerned with the existence of infinitely
many fast homoclinic solutions for the following damped vibration system

(1) ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0, ∀t ∈ R,

where q ∈ C(R,R), L ∈ C(R,RN2
) is a symmetric and positive definite

matix-valued function and W ∈ C1(R×RN ,R). The novelty of this paper
is that, assuming that L is bounded from below unnecessarily coercive at

infinity, and W is only locally defined near the origin with respect to the

second variable, we show that (1) possesses infinitely many homoclinic
solutions via a variant symmetric mountain pass theorem.

1. Introduction

We are interested in the existence of infinitely many homoclinic solutions for
a class of damped vibration systems

(DV) ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0, ∀t ∈ R,

where q : R → R is a continuous function, L ∈ C(R,RN2

) is a symmetric and
positive definite matix-valued function and W : R × RN → R is a continuous
function, differentiable with respect to the second variable with continuous
derivative ∂W

∂x (t, x) = ∇W (t, x).
As usual, we say that a solution u of (DV) is classical homoclinic (to 0) if

u ∈ C2(R,RN ) such that u(t) → 0 and u̇(t) → 0 as t → ∓∞. If u 6= 0, u is
called nontrivial.

When q = 0, (DV) is just the following second order Hamiltonian system:

(HS) ü(t)− L(t)u(t) +∇W (t, u(t)) = 0, ∀t ∈ R.
Homoclinic orbits of Hamiltonian systems are very important in the study of
gaz dynamics, fluid mechanics, relativistic mechanics, and nuclear physics. The
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homoclinic orbits are important in study of the behavior of dynamical systems
which have been researched from Poincaré [12].

In the last three decades, the existence and multiplicity of homoclinic so-
lutions of (HS) have been intensively studied by many mathematicians with
variational methods. Assuming that L(t) and W (t, x) are independent of t or
periodic in t, many authors have studied the existence and multiplicity of homo-
clinic solutions for (HS), see for instance [7,10,11,13,19,27] and the references
therein. In this case, the existence of homoclinic solutions can be obtained by
taking the limit of periodic solutions of approximating problems. If L(t) and
W (t, x) are neither autonomous nor periodic in t, compactness arguments de-
rived from Sobolev embedding theorem are not available for the study of (HS),
see [1, 2, 5, 8, 14–18,22–26] and the references cited therein.

When q 6= 0, i.e., the nonperiodic system (DV) has been considered only by
a few authors, see [3, 4, 6, 20, 21, 28]. In all theses papers, W (t, x) was always
required to satisfy some kinds of growth conditions at infinity with respect to
x, such as superquadratic, asymptotic quadratic or quadratic growth. Besides,
the function L is required to satisfy one of the following conditions:
(1.1) There exists an l ∈ C(R,R∗+) such that l(t)→ +∞ as |t| → ∞ and

L(t)x · x ≥ l(t) |x|2 , ∀(t, x) ∈ R× RN .

Here and in the following, “ · ” denotes the usual inner product of RN and |·|
is the induced norm.
(1.2) There are constants 0 < τ1 < τ2 < +∞ such that

τ1 |x|2 ≤ L(t)x · x ≤ τ2 |x|2 , ∀(t, x) ∈ R× RN .

(1.3) (i) There exists an l ∈ C(R,R) such that

inf
t∈R

l(t) > 0 and L(t)x · x ≥ l(t) |x|2 , ∀(t, x) ∈ R× RN ,

(ii) There exists a constant r0 > 0 such that

lim
|s|→∞

meas
(
{t ∈]s− r0, s+ r0[ : L(t) < bIN}

)
= 0, ∀b > 0,

where measQ denotes the Lebesgue’s measure on R with density eQ(t), Q(t) =∫ t
0
q(s)ds. The conditions (1.1), (1.2) and (1.3) guarantee the compactness of

the Sobolev embedding.
In the present paper, we will study the existence of infinity many homoclinic

solutions for (DV) in the case where W (t, x) is still only locally defined near
the origin with respect to x and L is bounded from below and unnecessary
coercive. More precisely, we make the following assumptions:
(L) There exists a constant l0 > 0 such that

l(t) = min
|ξ|=1

L(t)ξ · ξ ≥ l0, ∀t ∈ R.
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There exists a constant δ > 0 such that W ∈ C(R× Bδ(0),R) is continuously
differentiable in the second variable with continuous derivative, where Bδ(0) is
the open ball in RN centered at 0 with radius δ, and satisfies
(W1) W (t, x) is even in x and W (t, 0) = 0,∀t ∈ R;
(W2) There exist constants ν ∈]1, 2[, β1 ∈ [1, 2], β2 ∈ [1, 2

2−ν ] and nonnegative

functions a ∈ Lβ1

Q (R,R+), b ∈ Lβ2

Q (R,R+) such that

|∇W (t, x)| ≤ a(t) + b(t) |x|ν−1 , ∀(t, x) ∈ R×Bδ(0),

where LsQ will be defined in Section 2;

(W3) lim
|x|→0

W (t, x)

|x|2
= +∞, uniformly in t ∈ R.

Our main result reads as follows.

Theorem 1.1. Suppose that (L) and (W1)-(W3) are satisfied. Then the damped
vibration system (DV) possesses a sequence of homoclinic solutions (uk) such
that

max
t∈R
|uk(t)| → 0 as k →∞.

2. Preliminaries

In order to introduce the concept of homoclinic solutions for (DV) conve-
niently, we firstly describe some properties of the weighted Sobolev space E
on which certain variational functional associated with (DV) is defined and the
homoclinic solutions of (DV) are the critical points of such functional. We shall
use L2

Q(R) to denote the Hilbert space of measurable functions from R into RN
under the inner product

〈u, v〉L2
Q

=

∫
R
e
Q(t)

u(t) · v(t)dt

and the induced norm

‖u‖L2
Q

=
(∫

R
eQ(t) |u(t)|2 dt

) 1
2

.

Similarly, LpQ(R) (2 < p < ∞) denotes the Banach space of functions on R
with values in RN under the norm

‖u‖LpQ =
(∫

R
eQ(t) |u(t)|p dt

) 1
p

and L∞Q (R) denotes the Banach space of functions on R with values in RN
under the norm

‖u‖L∞
Q

= ess sup
{
e
Q(t)

2 |u(t)| : t ∈ R
}
.

Consider the Hilbert space

E =

{
u ∈ H1

Q(R) :

∫
R
eQ(t)L(t)u(t) · u(t)dt <∞

}
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equipped with the following inner product

〈u, v〉 =

∫
R
eQ(t)

[
u̇(t) · v̇(t) + L(t)u(t) · v(t)

]
dt

and the induced norm ‖u‖ = 〈u, u〉 12 . Here H1
Q(R) denotes the Sobolev space

H1
Q(R) =

{
u ∈ L2

Q(R) : u̇ ∈ L2
Q(R)

}
.

Evidently, E is continuously embedded into H1
Q(R). Hence E is continuously

embedded in LpQ(R) for all p ∈ [2,∞] and compactly embedded in LpQ,loc(R)

for all p ∈ [2,∞], where LpQ,loc(R) denotes the space of measurable functions

u from R into RN such that for all compact K ⊂ R,
∫
K
eQ(t) |u(t)|p dt < ∞.

Consequently, for all p ∈ [2,∞], there exists a constant ηp > O such that

(2.1) ‖u‖LpQ ≤ ηp ‖u‖ , ∀u ∈ E.

To prove our main result via critical point theory, we shall use the following
symmetric mountain pass theorem developed by Kajikiya [9]. We will first
recall the notion of genus.

Let E be a Banach space and let A be a subset of E. A is said to be
symmetric if u ∈ A implies −u ∈ A. For a closed symmetric set A which does
not contain the origin, we define the genus γ(A) of A by the smallest integer k
for which there exists an odd continuous mapping from R to Rk \ {0}. If such
a k does not exist, we define γ(A) = +∞. Moreover, we set γ(φ) = 0. Let

Γk = {A ⊂ E : A is a close symmetric subset, 0 /∈ A, γ(A) ≥ k} .

The properties of genus used in the proof of our main result are summarized
as follows.

Lemma 2.1 ([9, Proposition 7.5]). Let A and B be closed symmetric subsets
of E that do not contain the origin. Then the following hold.

(i) If A ⊂ B, then γ(A) ≤ γ(B).
(ii) The N -dimensional sphere SN has a genus of N+1 by the Borsuk-Ulam

theorem.

Lemma 2.2 ([9, Theorem 1]). Let E be an infinite-dimensional Banach space
and let Φ ∈ C1(E,R) be an even functional with Φ(0) = 0. Suppose that Φ
satisfies

(1) Φ is bounded from below and satisfies the (PS)-condition;
(2) For each k ∈ N, there exists Ak ⊂ Γk such that

sup
u∈Ak

Φ(u) < 0.

Then (a) or (b) below holds.
(a) There exists a critical point sequence (uk) such that Φ(uk) < 0 and

limk→∞ uk = 0;
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(b) There exist two critical point sequences (uk) and (vk) such that Φ(uk) =
0, uk 6= 0 and limk→∞ uk = 0, Φ(vk) < 0, limk→∞Φ(vk) = 0 and (vk) con-
verges to a non-zero limit.

3. Proof of Theorem 1.1

In order to prove our main result via critical point theory, we need to modify
W (t, x) for x outside a neighborhood of the origin to get W̃ (t, x) as follows.
Choose a constant r ∈]0, δ2 [ and define a cut-off function χ ∈ C1(R+,R+) such

that χ(s) = 1 for 0 ≤ s ≤ r, χ(s) = 0 for s ≥ 2r and − 2
r ≥ χ′(s) < 0 for

r < s < 2r. Let

(3.1) W̃ (t, x) = χ(|x|)W (t, x), ∀(t, x) ∈ R× RN .

Combining (W1), (W2) and the definition of χ, we obtain

(3.2)
∣∣∣W̃ (t, x)

∣∣∣ ≤ a(t) |x|+ b(t) |x|ν , ∀(t, x) ∈ R× RN ,

and

(3.3)
∣∣∣∇W̃ (t, x)

∣∣∣ ≤ 5
(
a(t) + b(t) |x|ν−1

)
, ∀(t, x) ∈ R× RN .

Now, we introduce the following modified system:

(D̃V) ü(t) + q(t)u̇(t)− L(t)u(t) = ∇W̃ (t, u(t)), t ∈ R

and define the variational functional Φ associated with (D̃V) by

(3.4)
Φ(u) =

1

2

∫
R
eQ(t)

[
|u̇(t)|2 + L(t)u(t) · u(t)

]
dt−

∫
R
eQ(t)W̃ (t, u(t))dt

=
1

2
‖u‖2 − ϕ(u),

where ϕ(u) =
∫
R e

Q(t)W̃ (t, u(t))dt.

Lemma 3.1. Assume that (L), (W1) and (W2) are satisfied. Then ϕ ∈
C1(E,R) and ϕ′ : E → E′ is compact, and hence Φ ∈ C1(E,R). Moreover

(3.5) ϕ′(u)v =

∫
R
eQ(t)∇W̃ (t, u(t)) · v(t)dt,

(3.6) Φ′(u)v = 〈u, v〉 −
∫
R
eQ(t)∇W̃ (t, u(t)) · v(t)dt

for all u, v ∈ E, and nontrivial critical points of Φ on E are homoclinic solu-
tions of (DV).

Proof. In the following, we will note

(3.7) β1 =
β1

β1 − 1
, β2 =

νβ2
β2 − 1

, (β1 =∞, β2 =∞, if β1 = 1 or β2 = 1).
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It is easy to see that β1, β2 ∈ [2,∞]. By (2.1), (3.2) and Hölder’s inequality,
we have for u ∈ E

(3.8)

∫
R
eQ(t)

∣∣∣W̃ (t, u(t))
∣∣∣ dt ≤ ∫

R
a(t) |u(t)| dt+

∫
R
b(t) |u(t)|ν dt

≤ ‖a‖
L
β1
Q

‖u‖
L
β1
Q

+ ‖b‖
L
β2
Q

‖u‖ν
L
β2
Q

≤ ηβ1
‖a‖

L
β1
Q

‖u‖+ ην
β2
‖b‖

L
β2
Q

‖u‖ν <∞,

which implies that ϕ and Φ are both well defined. Now, we prove that ϕ ∈
C1(E,R) and ϕ′ : E → E′ is compact. By (3.3), for any u, v ∈ E and s ∈ [0, 1],
there holds∣∣∣∇W̃ (t, u+ sv)v

∣∣∣ ≤ 5
[
a(t) + b(t) |u+ sv|ν−1

]
|v|

≤ 5
[
a(t) + b(t)

(
|u|ν−1 + |v|ν−1

)]
|v|

≤ 5
[
a(t) + b(t)

(
|u|ν−1 |v|+ |v|ν

)]
|v| .

Hence, by the Mean Value Theorem and Lebesgue’s Dominated Convergence
Theorem, we get for all u, v ∈ E

lim
s→0

ϕ(u+ sv)− ϕ(u)

s
= lim
s→0

∫
R
eQ(t)

∫ 1

0

∇W̃ (t, u+ rsv)vdrdt

=

∫
R
eQ(t)∇W̃ (t, u)vdt = L(u)v.

Moreover, it follows from (2.1), (3.3) and Hölder’s inequality that

(3.9)

|L(u)v| ≤
∫
R
eQ(t)

∣∣∣∇W̃ (t, u)
∣∣∣ |v| dt

≤ 5
[ ∫

R
eQ(t)a(t) |v| dt+

∫
R
eQ(t)a(t) |u|ν−1 |v| dt

≤ 5
[
‖a‖

L
β1
Q

‖v‖
L
β1
Q

+ ‖b‖
L
β2
Q

‖u‖ν−1
L
β2
Q

‖v‖
L
β2
Q

]
≤ 5
[
ηβ1
‖a‖

L
β1
Q

+ ην
β2
‖b‖

L
β2
Q

‖u‖ν−1
]
‖v‖ , ∀v ∈ E,

which means that L(u) is bounded. This means that ϕ is Gâteaux-differentiable
on E and its Gâteaux-derivative at u is L(u). Let un ⇀ u in E as n → ∞,
then (un) is bounded in E and

(3.10) un → u in L∞Q,loc(R) as n→∞.
Therefore, there exists a constant c1 > 0 such that

(3.11) ‖un‖ν−1 + ‖u‖ν−1 ≤ c1, ∀n ∈ N.
By (W2), for any ε > 0, there exists Rε > 0 such that

(3.12)
(∫
|t|≥Rε

eQ(t)(a(t))β1dt
) 1
β1 ≤ ε

40ηβ1

,
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(3.13)
(∫
|t|≥Rε

eQ(t)(b(t))β2dt
) 1
β2 ≤ ε

20c1ηνβ2

.

Combining (3.3) with (3.11)-(3.13), the Hölder’s inequality implies

(3.14)

∫
|t|≥Rε

eQ(t)
∣∣∣∇W̃ (t, un)−∇W̃ (t, u)

∣∣∣ |v| dt
≤ 5

∫
|t|≥Rε

eQ(t)
[
2a(t) + b(t)(|un|ν−1 + |u|ν−1)

]
|v| dt

≤ 10
(∫
|t|≥Rε

eQ(t)(a(t))β1dt
) 1
β1 ‖v‖

L
β1
Q

+ 5
(∫
|t|≥Rε

eQ(t)(b(t))β2dt
) 1
β2
(
‖un‖ν−1

L
β2
Q

+ ‖u‖ν−1
L
β2
Q

)
‖v‖

L
β2
Q

≤ 10ηβ1

(∫
|t|≥Rε

eQ(t)(a(t))β1dt
) 1
β1

+ 5ην
β2

(∫
|t|≥Rε

eQ(t)(b(t))β2dt
) 1
β2
(
‖un‖ν−1 + ‖u‖ν−1

)
≤ ε

4
+
ε

4
=
ε

2
, ∀n ∈ N, and ‖v‖ = 1.

For the Rε given above, by (2.1), (3.10) and the continuity of ∇W̃ , there exists
n0 ∈ N such that for all n ≥ n0 and ‖v‖ = 1

(3.15)

∫ Rε

−Rε
eQ(t)

∣∣∣∇W̃ (t, un)−∇W̃ (t, u)
∣∣∣ |v| dt

≤ η∞

∫ Rε

−Rε
eQ(t)

∣∣∣∇W̃ (t, un)−∇W̃ (t, u)
∣∣∣ dt < ε

2
.

Combining (3.14) with (3.15), we get

‖L(un)− L(u)‖E′ = sup
‖v‖=1

|(L(un)− L(u))v|

= sup
‖v‖=1

∣∣∣∣∫
R
eQ(t)(∇W̃ (t, un)−∇W̃ (t, u)) · vdt

∣∣∣∣
≤ sup
‖v‖=1

∫ Rε

−Rε
eQ(t)

∣∣∣∇W̃ (t, un)−∇W̃ (t, u)
∣∣∣ |v| dt

+ sup
‖v‖=1

∫
|t|≥Rε

eQ(t)
∣∣∣∇W̃ (t, un)−∇W̃ (t, u)

∣∣∣ |v| dt
<
ε

2
+
ε

2
= ε for all n ≥ n0.

This implies that L is continuous. Thus ϕ ∈ C1(E,R) and (3.5) holds with
ϕ′ = L. This together with the reflexivity of the Hilbert space E implies that
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ϕ′ is compact. In addition, due to the form of Φ, we see that Φ ∈ C1(E,R)
and (3.6) also holds. The proof of Lemma 3.1 is completed. �

Lemma 3.2. Assume that (L), (W1) and (W2) hold. Then Φ is bounded from
below and satisfies the (PS)-condition.

Proof. Firstly, we prove that Φ is bounded from below. By (3.8), it follows

(3.16)
Φ(u) ≥ 1

2
‖u‖2 −

∫
R
eQ(t)

∣∣∣∇W̃ (t, u)
∣∣∣ dt

≥ 1

2
‖u‖2 − ηβ1

‖a‖
L
β1
Q

‖u‖ − ην
β2
‖b‖

L
β2
Q

‖u‖ν .

Since ν < 2, it follows that Φ is bounded from below. Next, we show that Φ
satisfies the (PS)-condition. Let (un) be a (PS)-sequence, that is

(3.17) |Φ(un)| ≤M, ∀n ∈ N, Φ′(un)→ 0 as n→∞
for some constant M > 0. By (3.16) and (3.17), it holds

M ≥ 1

2
‖un‖2 − ηβ1

‖a‖
L
β1
Q

‖un‖ − ηνβ2
‖b‖

L
β2
Q

‖un‖ν

which implies that (un) is bounded in E since ν < 2. Hence, up to a subse-
quence if necessary, we can assume that

(3.18) un ⇀ u in E as n→∞
for some u ∈ E. By virtue of the Riez Representation Theorem, ϕ : E → E′

and Φ′ : E → E′ can be viewed as ϕ : E → E and Φ′ : E → E, respectively.
This together with (3.5) and (3.6) yields

(3.19) un = Φ′(un) + ϕ′(un), ∀n ∈ N.
By Lemma 3.1, ϕ′ is compact. Combining this with (3.17)-(3.19), the right
side of (3.19) converges strongly in E and hence un → u in E as n→∞. Then
Φ satisfies the (PS)-condition. The proof of Lemma 3.2 is completed. �

Lemma 3.3. Suppose that (L) and (W3) hold. Then for each k ∈ N, there
exists an Ak ⊂ E with genus γ(Ak) ≥ k such that supu∈Ak Φ(u) < 0.

Proof. Let (en) be an orthonormal basis of E. Then for each k ∈ N, let

Ek = ⊕km=1span {em} .
Since Ek is finite dimensional, there exists a constant τk > 0 such that

(3.20) ‖u‖ ≤ τk ‖u‖L2
Q
, ∀u ∈ Ek.

By (W3), there exists a constant Rk > 0 such that

(3.21) W̃ (t, x) ≥ τ2k |x|
2
, ∀t ∈ R, |x| ≤ Rk.

Let u ∈ E such that ‖u‖ ≤ Rk
η∞

. By (2.1), we know that |u(t)| ≤ Rk for all

t ∈ R, thus by (3.21), it holds

(3.22) W̃ (t, u(t)) ≥ τ2k |u(t)|2 , ∀t ∈ R.
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Therefore, by (3.20) and (3.22), for all u ∈ Ek \{0} with 0 < ‖u‖ = min{r,Rk}
η∞

=

ρk, we have

Φ(u) =
1

2
‖u‖2 −

∫
R
eQ(t)∇W̃ (t, u)dt

≤ 1

2
‖u‖2 −

∫
R
eQ(t)τ2k |u(t)|2 dt

≤ 1

2
‖u‖2 − ‖u‖2

= −1

2
ρ2k,

which implies

(3.23) {u ∈ Ek \ {0} : ‖u‖ = ρk} ⊂ Ak =

{
u ∈ Ek : Φ(u) ≤ −1

2
ρ2k

}
.

Thus, by Lemma 2.1, (3.23) implies

γ(Ak) ≥ γ
(
{u ∈ Ek \ {0} / ‖u‖ = ρk}

)
≥ k

hence, by the definition of Γk, we have Ak ⊂ Γk. Moreover, the definition of
Ak implies

sup
u∈Ak

Φ(u) ≤ −1

2
ρ2k < 0.

The proof of Lemma 3.3 is completed. �

Consequently, Φ possesses a sequence of nontrivial critical points (uk) sat-
isfying uk → 0 in E as k → ∞. By virtue of Lemma 3.1, (uk) is a sequence

of homoclinic solutions of (D̃V). By (2.1), it follows that maxt∈R |uk(t)| → 0
as k →∞. Therefore, there exists a positive constant k0 ∈ N such that for all
k ≥ k0, uk is a homoclinic solution of (DV). This ends the proof of Theorem
1.1.
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