• Title/Summary/Keyword: variational problems

Search Result 252, Processing Time 0.021 seconds

FIXED POINTS SOLUTIONS OF GENERALIZED EQUILIBRIUM PROBLEMS AND VARIATIONAL INEQUALITY PROBLEMS

  • Shehu, Yekini;Collins, C. Obiora
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1263-1275
    • /
    • 2010
  • In this paper, we introduce a new iterative scheme for finding a common element of the set of common fixed points of infinite family of nonexpansive mappings and the set of solutions to a generalized equilibrium problem and the set of solutions to a variational inequality problem in a real Hilbert space. Then strong convergence of the scheme to a common element of the three sets is proved. As applications, three new strong convergence theorems are obtained. Our theorems extend important recent results.

A VISCOSITY TYPE PROJECTION METHOD FOR SOLVING PSEUDOMONOTONE VARIATIONAL INEQUALITIES

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.347-371
    • /
    • 2021
  • A plethora of applications from mathematical programmings, such as minimax, mathematical programming, penalization and fixed point problems can be framed as variational inequality problems. Most of the methods that used to solve such problems involve iterative methods, that is why, in this paper, we introduce a new extragradient-like method to solve pseudomonotone variational inequalities in a real Hilbert space. The proposed method has the advantage of a variable step size rule that is updated for each iteration based on previous iterations. The main advantage of this method is that it operates without the previous knowledge of the Lipschitz constants of an operator. A strong convergence theorem for the proposed method is proved by letting the mild conditions on an operator 𝒢. Numerical experiments have been studied in order to validate the numerical performance of the proposed method and to compare it with existing methods.

APPROXIMATION METHODS FOR SOLVING SPLIT EQUALITY OF VARIATIONAL INEQUALITY AND f, g-FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES

  • Yirga Abebe Belay;Habtu Zegeye;Oganeditse A. Boikanyo
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.135-173
    • /
    • 2023
  • The purpose of this paper is to introduce and study a method for solving the split equality of variational inequality and f, g-fixed point problems in reflexive real Banach spaces, where the variational inequality problems are for uniformly continuous pseudomonotone mappings and the fixed point problems are for Bregman relatively f, g-nonexpansive mappings. A strong convergence theorem is proved under some mild conditions. Finally, a numerical example is provided to demonstrate the effectiveness of the algorithm.

AN ITERATIVE METHOD FOR NONLINEAR MIXED IMPLICIT VARIATIONAL INEQUALITIES

  • JEONG, JAE UG
    • Honam Mathematical Journal
    • /
    • v.26 no.4
    • /
    • pp.391-399
    • /
    • 2004
  • In this paper, we develop an iterative algorithm for solving a class of nonlinear mixed implicit variational inequalities in Hilbert spaces. The resolvent operator technique is used to establish the equivalence between variational inequalities and fixed point problems. This equivalence is used to study the existence of a solution of nonlinear mixed implicit variational inequalities and to suggest an iterative algorithm for solving variational inequalities. In our results, we do not assume that the mapping is strongly monotone.

  • PDF

HEMIVARIATIONAL INEQUALITIES

  • ASLAM NOOR MUHAMMAD
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.59-72
    • /
    • 2005
  • The auxiliary principle is used to suggest and analyze some iterative methods for solving solving hemivariational inequalities under mild conditions. The results obtained in this paper can be considered as a novel application of the auxiliary principle technique. Since hemivariational in­equalities include variational inequalities and nonlinear optimization problems as special cases, our results continue to hold for these problems.

Numerical Solutions of Third-Order Boundary Value Problems associated with Draining and Coating Flows

  • Ahmed, Jishan
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.651-665
    • /
    • 2017
  • Some computational fluid dynamics problems concerning the thin films flow of viscous fluid with a free surface and draining or coating fluid-flow problems can be delineated by third-order ordinary differential equations. In this paper, the aim is to introduce the numerical solutions of the boundary value problems of such equations by variational iteration method. In this paper, it is shown that the third-order boundary value problems can be written as a system of integral equations, which can be solved by using the variational iteration method. These solutions are gleaned in terms of convergent series. Numerical examples are given to depict the method and their convergence.

VARIATIONAL DECOMPOSITION METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

  • Noor, Muhammad Aslam;Mohyud-Din, Syed Tauseef
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1343-1359
    • /
    • 2009
  • In this paper, we implement a relatively new analytical technique by combining the traditional variational iteration method and the decomposition method which is called as the variational decomposition method (VDM) for solving the sixth-order boundary value problems. The proposed technique is in fact the modification of variatioanal iteration method by coupling it with the so-called Adomian's polynomials. The analytical results of the equations have been obtained in terms of convergent series with easily computable components. Comparisons are made to verify the reliability and accuracy of the proposed algorithm. Several examples are given to check the efficiency of the proposed algorithm. We have also considered an example where the VDM is not reliable.

  • PDF

SYSTEM OF GENERALIZED SET-VALUED PARAMETRIC ORDERED VARIATIONAL INCLUSION PROBLEMS WITH OPERATOR ⊕ IN ORDERED BANACH SPACES

  • Akram, Mohammad;Dilshad, Mohammad
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.103-119
    • /
    • 2021
  • In this article, we study a system of generalized set-valued parametric ordered variational inclusion problems with operator ⊕ in ordered Banach spaces. We introduce the concept of the resolvent operator associated with (α, λ)-ANODSM set-valued mapping and establish the existence theorem of solution for the system of generalized set-valued parametric ordered variational inclusion problems in ordered Banach spaces. In order to prove the existence of solution, we suggest an iterative algorithm and discuss the convergence analysis under some suitable mild conditions.

HYBRID INERTIAL CONTRACTION PROJECTION METHODS EXTENDED TO VARIATIONAL INEQUALITY PROBLEMS

  • Truong, N.D.;Kim, J.K.;Anh, T.H.H.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.203-221
    • /
    • 2022
  • In this paper, we introduce new hybrid inertial contraction projection algorithms for solving variational inequality problems over the intersection of the fixed point sets of demicontractive mappings in a real Hilbert space. The proposed algorithms are based on the hybrid steepest-descent method for variational inequality problems and the inertial techniques for finding fixed points of nonexpansive mappings. Strong convergence of the iterative algorithms is proved. Several fundamental experiments are provided to illustrate computational efficiency of the given algorithm and comparison with other known algorithms