Acknowledgement
The first and the second authors would like to gratefully acknowledge the funding received from Simons Foundation based at Botswana International University of Science and Technology (BIUST).
References
- R.P. Agarwal, D. O'Regan and D.R. Sahu, Topological Fixed Point Theory and Its Applications 6, Springer, 2009.
- M.A. Alghamdia, N. Shahzada and H. Zegeye, Construction of a common solution of a finite family of variational inequality problems for monotone mappings, J. Nonlinear Sci. Appl., 9 (2016), 1645-1657. https://doi.org/10.22436/jnsa.009.04.21
- H.H. Bauschke and J.M. Borwein, Legendre functions and the method of random bregman projections, J. Convex Anal., 4 (1997), 27-67.
- H.H. Bauschke, J.M. Borwein and Patrick L Combettes, Essential smoothness, essential strict convexity, and legendre functions in banach spaces, Commun. Contemp. Math., 3 (2001), 615-647. https://doi.org/10.1142/S0219199701000524
- O.A. Boikanyo and H. Zegeye, Split equality variational inequality problems for pseudomonotone mappings in Banach spaces, Stud. Univ. Babes-Bolyai Math., 66 (2021).
- J.F. Bonnans and A. Shapiro, Perturbation analysis of optimization problems, Springer Science & Business Media, 2013.
- D. Butnariu and E. Resmerita, Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces, Abstr. Appl. Anal., 2006 (2006).
- G. Cai and S. Bu, An iterative algorithm for a general system of variational inequalities and fixed point problems in q-uniformly smooth Banach spaces, Optim. Lett., 7 (2013), 267-287. https://doi.org/10.1007/s11590-011-0415-y
- Y. Censor and T. Elfving, A multiprojection algorithm using bregman projections in a product space, Numer. Algorithms, 8 (1994), 221-239. https://doi.org/10.1007/BF02142692
- J.Y.B. Cruz and A.N. Iusem, A strongly convergent direct method for monotone variational inequalities in Hilbert spaces, Numer. Funct. Anal. Optim., 30 (2009), 23-36. https://doi.org/10.1080/01630560902735223
- F. Facchinei and J-S Pang, Finite-dimensional variational inequalities and complementarity problems, Springer Science & Business Media, 2007.
- A.A. Goldstein, Convex programming in Hilbert space, Bull. Amer. Math. Soc., 70 (1964), 709-710 https://doi.org/10.1090/S0002-9904-1964-11178-2
- P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math., 115 (1966), 271-310. https://doi.org/10.1007/BF02392210
- H. Iiduka, Approximation of solutions of variational inequalities for monotone mappings, PanAmer. Math. J., 14 (2004), 49-61.
- A.D. Ioffe, On the theory of subdifferentials, Adv. Nonlinear Anal., (2012), 47-120.
- L.O. Jolaoso and Y. Shehu, Single bregman projection method for solving variational inequalities in reflexive Banach spaces, Appl. Anal., 2021, 1-22.
- K.M.T. Kwelegano, H. Zegeye and O.A. Boikanyo, An iterative method for split equality variational inequality problems for non-lipschitz pseudomonotone mappings, Rend. Circ. Mat. Palermo, Series 2, 71 (2022), 325-347. https://doi.org/10.1007/s12215-021-00608-8
- P.E. Mainge, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899-912. https://doi.org/10.1007/s11228-008-0102-z
- V. Martin-Marquez, S. Reich and S. Sabach, Right bregman nonexpansive operators in banach spaces, Nonlinear Anal., 75 (2012), 5448-5465. https://doi.org/10.1016/j.na.2012.04.048
- J. Mashreghi and M. Nasri, Forcing strong convergence of korpelevich's method in banach spaces with its applications in game theory, Nonlinear Anal., 72 (2010), 2086-2099. https://doi.org/10.1016/j.na.2009.10.009
- A. Moudafi, A relaxed alternating cq-algorithm for convex feasibility problems, Nonlinear Anal., 79 (2013), 117-121. https://doi.org/10.1016/j.na.2012.11.013
- N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128 (2006), 191-201. https://doi.org/10.1007/s10957-005-7564-z
- E. Naraghirad and J.C. Yao, Bregman weak relatively nonexpansive mappings in Banach spaces, Fixed Point Theory Appl., 2013 (2013), 1-43. https://doi.org/10.1186/1687-1812-2013-1
- M.A. Olona and O.K. Narain, Iterative method for solving finite families of variational inequality and Fixed Point Problems of certain multi-valued mappings, Nonlinear Funct. Anal. Appl., 27(1) (2022), 149-167. https://doi.org/10.22771/NFAA.2022.27.01.10
- R.R. Phelps, Convex functions, monotone operators and differentiability, Springer, 1364 (2009).
- T. Sow, New iterative schemes for solving variational inequality and fixed points problems involving demicontractive and quasi-nonexpansive mappings in Banach spaces, Appl. Math. Nonlinear Sci., 4 (2019), 559-574. https://doi.org/10.2478/amns.2019.2.00053
- W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428. https://doi.org/10.1023/A:1025407607560
- D.V. Thong, Y. Shehu and O.S. Iyiola, A new iterative method for solving pseudomonotone variational inequalities with non-lipschitz operators, Comput. Appl. Math., 39 (2020), 1-24. https://doi.org/10.1007/s40314-019-0964-8
- D.V. Thong and D.V. Hieu, Weak and strong convergence theorems for variational inequality problems, Numer. Algorithms, 78 (2018), 1045-1060. https://doi.org/10.1007/s11075-017-0412-z
- N.D. Truong, J.K. Kim and T.H.H. Anh, Hybrid inertial contraction projection methods extended to variational inequality problems, Nonlinear Funct.Anal. Appl., 27(1) (2022), 203-221.
- A.R. Tufa and H. Zegeye, An algorithm for finding a common point of the solutions of fixed point and variational inequality problems in Banach spaces, Arab. J. Math., Springer, 4 (2015), 199-213. https://doi.org/10.1007/s40065-015-0130-0
- G.C. Ugwunnadi and B. Ali, Convergence results for a common solution of a finite family of equilibrium problems and quasi-bregman nonexpansive mappings in Banach space, J. Oper., 2016 (2016).
- A.Y. Wang and Z.M. Wang, A simple hybrid Bregman projection algorithms for a family of countable Bregman quasi-strict pseudo-contraction, Nonlinear Funct. Anal. Appl., 22(5) (2017), 1001-1011. https://doi.org/10.22771/NFAA.2017.22.05.05
- G.B. Wega and H. Zegeye, Convergence theorems of common solutions of variational inequality and f-fixed point problems in Banach spaces, Set-Valued Anal., 3 (2021), 55-73.
- C. Zalinescu, Convex analysis in general vector spaces, World scientific, 2002.
- H. Zegeye, E.U. Ofoedu and N. Shahzad, Convergence theorems for equilibrium problem, variational inequality problem and countably infinite relatively quasi-nonexpansive mappings, Appl. Math. Comput., 216 (2010), 3439-3449. https://doi.org/10.1016/j.amc.2010.02.054
- H. Zegeye and N. Shahzad, A hybrid scheme for finite families of equilibrium, variational inequality and fixed point problems, Nonlinear Anal., 74 (2011), 263-272. https://doi.org/10.1016/j.na.2010.08.040