FIXED POINTS SOLUTIONS OF GENERALIZED EQUILIBRIUM PROBLEMS AND VARIATIONAL INEQUALITY PROBLEMS

Y. SHEHU* AND C. O. COLLINS

Abstract

In this paper, we introduce a new iterative scheme for finding a common element of the set of common fixed points of infinite family of nonexpansive mappings and the set of solutions to a generalized equilibrium problem and the set of solutions to a variational inequality problem in a real Hilbert space. Then strong convergence of the scheme to a common element of the three sets is proved. As applications, three new strong convergence theorems are obtained. Our theorems extend important recent results.

AMS Mathematics Subject Classification : 47H06, 47H09, 47J05, 47J25. Key words and phrases : Nonexpansive mappings, Generalized equilibrium problem, Variational inequality problems, Metric projection, Hilbert spaces.

1. Introduction

Let K be a nonempty closed convex subset of a real Hilbert space H. A mapping $A: K \rightarrow H$ is called monotone if

$$
\begin{equation*}
\langle A x-A y, x-y\rangle \geq 0, \forall x, y \in K \tag{1}
\end{equation*}
$$

The variational inequality problem is to find an $x^{*} \in K$ such that

$$
\begin{equation*}
\left\langle A x^{*}, y-x^{*}\right\rangle \geq 0, \forall y \in K \tag{2}
\end{equation*}
$$

(See, for example, [2-4]). We shall denote the set of solutions of the variational inequality problem (2) by $V I(K, A)$.
A mapping $A: K \rightarrow H$ is called inverse-strongly monotone (see, for example, $[3,10]$ if there exists a positive real number α such that $\langle A x-A y, x-y\rangle \geq \alpha \| A x-$ $A y \|^{2}, \forall x, y \in K$. For such a case, A is called α-inverse-strongly monotone.

[^0]A mapping $T: K \rightarrow K$ is called nonexpansive if

$$
\|T x-T y\| \leq\|x-y\|, \forall x, y \in K
$$

A mapping $T: K \rightarrow K$ is said to be k-strictly pseudocontractive if there exists a constant $k \in[0,1)$ such that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+k\|(I-T) x-(I-T) y\|^{2}
$$

for all $x, y \in K$. If $k=0$, then the mapping T is nonexpansive. Observe that if T is a k-strictly pseudocontractive and we put $A:=I-T$, where I is the identity operator defined on K, then we have that

$$
\|(I-A) x-(I-A) y\|^{2} \leq\|x-y\|^{2}+k\|A x-A y\|^{2}
$$

for all $x, y \in K$ and since H is a real Hilbert space, we have that

$$
\|(I-A) x-(I-A) y\|^{2}=\|x-y\|^{2}+\|A x-A y\|^{2}-2\langle x-y, A x-A y\rangle
$$

So,

$$
\langle x-y, A x-A y\rangle \geq \frac{1-k}{2}\|A x-A y\|^{2}
$$

Thus, if T is a k-strictly pseudocontractive mapping, then $A=I-T$ is an α-inverse strongly monotone operator with $\alpha=\frac{1-k}{2}$.
A point $x \in K$ is called a fixed point of T if $T x=x$. The set of fixed points of T is the set $F(T):=\{x \in K: T x=x\}$.
Let F be a bifunction of $K \times K$ into \mathbb{R}, the set of reals and $A: K \rightarrow H$ be a nonlinear mapping. The generalized equilibrium problem is to find $x \in K$ such that

$$
\begin{equation*}
F(x, y)+\langle A x, y-x\rangle \geq 0 \tag{3}
\end{equation*}
$$

for all $y \in K$. The set of solutions of this generalized equilibrium problem is denoted by $E P$. Thus

$$
E P:=\left\{x^{*} \in K: F\left(x^{*}, y\right)+\left\langle A x^{*}, y-x^{*}\right\rangle \geq 0, \forall y \in K\right\}
$$

In the case of $A \equiv 0, E P$ is denoted by $E P(F)$ and in the case of $F \equiv 0, E P$ is denoted by $V I(K, A)$. The problem (3) includes as special cases, optimization problems, variational inequalities, minimax problems, Nash equilibrium problems in noncooperative games, etc (see, for example, [1, 12]). Very recently, the problem of approximating fixed points of nonexpansive mappings which are also solutions to generalized equilibrium problem has become an interesting area of research for many authors in fixed point theory and many iterative schemes have been developed. Furthermore, these iterative schemes are for either single nonexpansive mapping (see, for example, $[8,10,11,17],[22-24]$ and the references contained therein) or finite family of nonexpansive mappings (see, for example, [15], [18] and the references contained therein) or infinite family of nonexpansive mappings (see, for example, $[16,21,26]$ and the references contained therein). We remark here that many of the algorithms constructed for approximation of common fixed points of family of nonexpansive mappings which are also solutions to generalized equilibrium problems involve the so-called W_{n}-mapping
generated by $T_{n}, T_{n-1}, \ldots, T_{1}$ mappings (see, for example, [5-7], [25] and the references contained therein). Also, the problem of approximating the common fixed points of finite family of asymptotically nonexpansive mappings which are also solutions to variational inequality problems have also been considered (see, for example, $[13,20])$.

In this paper, we propose a new iterative scheme for finding a common element of the set of common fixed points of an infinite family of nonexpansive mappings and the set of solutions to a generalized equilibrium problem and the set of solutions to a variational inequality problem in a real Hilbert space. We show that the iterative scheme proposed converges strongly to a common element of the three sets. Then, three new strong convergence theorems are deduced. Our proposed algorithm does not involve the W_{n}-mappings for the family of operators considered. Furthermore, the condition: "Let $\sum_{n=1}^{\infty} \sup \left\{\left\|T_{n+1} x-T_{n} x\right\|: x \in\right.$ $B\}<\infty$ for any bounded subset B of K and T be a mapping of K into itself defined by $T x:=\lim _{n \rightarrow \infty} T_{n} x$ for all $x \in K$ and suppose that $F(T)=\bigcap_{n=1}^{\infty} F\left(T_{n}\right) \neq \emptyset \prime \prime$ used in [14] and [19] is dispensed with in our iterative algorithm.

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle.,$.$\rangle and norm \|$.$\| and let K$ be a nonempty closed convex subset of H. The weak convergence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ to x is denoted by $x_{n} \rightharpoonup x$ as $n \rightarrow \infty$, while the strong convergence of $\left\{x_{n}\right\}_{n=1}^{\infty}$ to x is written $x_{n} \rightarrow x$ as $n \rightarrow \infty$.
For any point $u \in H$, there exists a unique point $P_{K} u \in K$ such that

$$
\begin{equation*}
\left\|u-P_{K} u\right\| \leq\|u-y\|, \forall y \in K \tag{4}
\end{equation*}
$$

P_{K} is called the metric projection of H onto K. We know that P_{K} is a nonexpansive mapping of H onto K. It is also known that P_{K} satisfies

$$
\begin{equation*}
\left\langle x-y, P_{K} x-P_{K} y\right\rangle \geq\left\|P_{K} x-P_{K} y\right\|^{2}, \forall x, y \in H \tag{5}
\end{equation*}
$$

Furthermore, $P_{K} x$ is characterized by the properties $P_{K} x \in K$ and

$$
\begin{gather*}
\left\langle x-P_{K} x, P_{K} x-y\right\rangle \geq 0, \forall y \in K \tag{6}\\
\left\|x-P_{K} x\right\|^{2} \leq\|x-y\|^{2}-\left\|y-P_{K} x\right\|^{2}, \forall x \in H, y \in K . \tag{7}
\end{gather*}
$$

In the context of the variational inequality problem, (6) implies that

$$
x^{*} \in V I(K, A) \Leftrightarrow x^{*}=P_{K}\left(x^{*}-\lambda A x^{*}\right), \forall \lambda>0 .
$$

If A is α-inverse-strongly monotone mapping of K into H, then it is obvious that A is $\frac{1}{\alpha}$-Lipschitz continuous. We also have that for all $x, y \in K$ and $r>0$,

$$
\begin{align*}
\|(I-r A) x-(I-r A) y\|^{2} & =\|x-y-r(A x-A y)\|^{2} \\
& =\|x-y\|^{2}-2 r\langle A x-A y, x-y\rangle+r^{2}\|A x-A y\|^{2} \tag{8}\\
& \leq\|x-y\|^{2}+r(r-2 \alpha)\|A x-A y\|^{2}
\end{align*}
$$

So, if $r \leq 2 \alpha$, then $I-r A$ is a nonexpansive mapping of K into H.
For solving the equilibrium problem for a bifunction $F: K \times K \rightarrow \mathbb{R}$, let us assume that F satisfies the following conditions:
(A1) $F(x, x)=0$ for all $x \in K$;
(A2) F is monotone, i.e., $F(x, y)+F(y, x) \leq 0$ for all $x, y, \in K$;
(A3) for each $x, y \in K, \lim _{t \rightarrow 0} F(t z+(1-t) x, y) \leq F(x, y)$;
(A4) for each $x \in K, y \mapsto F(x, y)$ is convex and lower semicontinuous.
Lemma 1 (Blum and Oettli, [1]). Let K be a nonempty closed convex subset of H and let F be a bifunction of $K \times K$ into \mathbb{R} satisfying $(A 1)-(A 4)$. Let $r>0$ and $x \in H$. Then, there exists $z \in K$ such that

$$
F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0 \quad \text { for all } y \in K
$$

Lemma 2 (Combettes and Hirstoaga, [9]). Assume that $F: K \times K \rightarrow \mathbb{R}$ satisfies (A1) - (A4). For $r>0$ and $x \in H$, define a mapping $T_{r}: H \rightarrow K$ as follows:

$$
T_{r}(x)=\left\{z \in K: F(z, y)+\frac{1}{r}\langle y-z, z-x\rangle \geq 0, \forall y \in K\right\}
$$

for all $z \in H$. Then, the following hold:

1. T_{r} is single-valued;
2. T_{r} is firmly nonexpansive, i.e., $\left\|T_{r} x-T_{r} y\right\|^{2} \leq\left\langle T_{r} x-T_{r} y, x-y\right\rangle \forall x, y \in H$; 3. $F\left(T_{r}\right)=E P(F)$;
3. $E P(F)$ is closed and convex.

3. Main Results

Theorem 1. Let K be a closed convex nonempty subset of a real Hilbert space H. Let F be a bi-function from $K \times K$ satisfying ($A 1$) $-(A 4)$, A be an α -inverse-strongly monotone mapping of K into H, B be an β-inverse-strongly monotone mapping of K into H and for each $i=1,2, \ldots$, let $T_{i}: K \rightarrow K$ be a nonexpansive mapping. Suppose $F:=\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \bigcap E P \bigcap V I(K, B) \neq \emptyset$. Let $\left\{z_{n}\right\}_{n=1}^{\infty},\left\{y_{n, i}\right\}_{n=1}^{\infty}(i=1,2, \ldots)$ and $\left\{x_{n}\right\}_{n=0}^{\infty=1}$ be generated by $x_{0} \in K$,

$$
\left\{\begin{array}{l}
C_{1, i}=K, C_{1}=\bigcap_{i=1}^{\infty} C_{1, i} \tag{9}\\
x_{1}=P_{C_{1}} x_{0} \\
F\left(z_{n}, y\right)+\left\langle A x_{n}, y-z_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-z_{n}, z_{n}-x_{n}\right\rangle \geq 0 \forall y \in K \\
u_{n}=P_{K}\left(z_{n}-\lambda_{n} B z_{n}\right) \\
y_{n, i}=\alpha_{n, i} x_{n}+\left(1-\alpha_{n, i}\right) T_{i} u_{n}, n \geq 1 \\
C_{n+1, i}=\left\{z \in C_{n, i}:\left\|y_{n, i}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, n \geq 1 \\
C_{n+1}=\bigcap_{i=1}^{\infty} C_{n+1, i} \\
x_{n+1}=P_{C_{n+1}} x_{0}, n \geq 1
\end{array}\right.
$$

Assume that $\left\{\alpha_{n, i}\right\}_{n=1}^{\infty} \subset[0,1)(i=1,2, \ldots),\left\{r_{n}\right\}_{n=1}^{\infty} \subset[0,2 \alpha]$ and $\left\{\lambda_{n}\right\}_{n=1}^{\infty} \subset$ $[0,2 \beta]$ satisfy

$$
0<a \leq r_{n} \leq b<2 \alpha, 0<c \leq \lambda_{n} \leq f<2 \beta, 0 \leq \alpha_{n, i} \leq d_{i}<1
$$

Then, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $P_{F} x_{0}$.
Proof. Put $z_{n}:=T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right), n \geq 1$. Let $x^{*} \in F$ and $\left\{T_{r_{n}}\right\}_{n=1}^{\infty}$ be a sequence of mappings defined as in Lemma 2. Since both $I-r_{n} A$ and $I-\lambda_{n} B$ are nonexpansive for each $n \geq 1$ and $x^{*}=T_{r_{n}}\left(x^{*}-\lambda_{n} A x^{*}\right)$, we have $\left\|u_{n}-x^{*}\right\| \leq$ $\left\|z_{n}-x^{*}\right\|$ and from (8), we have

$$
\begin{aligned}
\left\|z_{n}-x^{*}\right\|^{2} & =\left\|T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)-x^{*}\right\|^{2} \\
& =\left\|T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)-T_{r_{n}}\left(x^{*}-r_{n} A x^{*}\right)\right\|^{2} \\
& \leq\left\|\left(I-r_{n} A\right) x_{n}-\left(I-r_{n} A\right) x^{*}\right\|^{2} \\
& \leq\left\|x_{n}-x^{*}\right\|^{2}+r_{n}\left(r_{n}-2 \alpha\right)\left\|A x_{n}-A x^{*}\right\|^{2} \\
& \leq\left\|x_{n}-x^{*}\right\|^{2} \quad\left(\text { since } r_{n}<2 \alpha, \forall n \geq 1\right) .
\end{aligned}
$$

Let $n=1$, then $C_{1, i}=K$ is closed convex for each $i=1,2, \ldots$. Now assume that $C_{n, i}$ is closed convex for some $n>1$. Then, from definition of $C_{n+1, i}$, we know that $C_{n+1, i}$ is closed convex for the same $n>1$. Hence, $C_{n, i}$ is closed convex for $n \geq 1$ and for each $i=1,2, \ldots$. This implies that C_{n} is closed convex for $n \geq 1$ and for each $i=1,2, \ldots$. Furthermore, for $n=1, F \subset K=C_{1, i}$. For $n \geq 2$, let $x^{*} \in F$. Then,

$$
\begin{aligned}
\left\|y_{n, i}-x^{*}\right\| & \leq \alpha_{n, i}\left\|x_{n}-x^{*}\right\|+\left(1-\alpha_{n, i}\right)\left\|T_{i} u_{n}-x^{*}\right\| \\
& \leq \alpha_{n, i}\left\|x_{n}-x^{*}\right\|+\left(1-\alpha_{n, i}\right)\left\|u_{n}-x^{*}\right\| \\
& \leq \alpha_{n, i}\left\|x_{n}-x^{*}\right\|+\left(1-\alpha_{n, i}\right)\left\|z_{n}-x^{*}\right\| \\
& \leq\left\|x_{n}-x^{*}\right\|,
\end{aligned}
$$

which shows that $x^{*} \in C_{n, i}, \forall n \geq 2, \forall i=1,2, \ldots$ Thus, $F \subset C_{n, i}, \forall n \geq 1, \forall i=$ $1,2, \ldots$ Hence, it follows that $F \subset C_{n}, \forall n \geq 1$. Since $x_{n}=P_{C_{n}} x_{0}, \forall n \geq 1$ and $x_{n+1} \in C_{n+1} \subset C_{n}, \forall n \geq 1$, we have

$$
\begin{equation*}
\left\|x_{n}-x_{0}\right\| \leq\left\|x_{n+1}-x_{0}\right\|, \forall n \geq 0 \tag{10}
\end{equation*}
$$

Also, as $F \subset C_{n}$ by (4), it follows that

$$
\begin{equation*}
\left\|x_{n}-x_{0}\right\| \leq\left\|z-x_{0}\right\|, z \in F, \forall n \geq 0 \tag{11}
\end{equation*}
$$

From (10) and (11), we have that $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|$ exists. Hence, $\left\{x_{n}\right\}_{n=0}^{\infty}$ is bounded and so are $\left\{z_{n}\right\}_{n=1}^{\infty},\left\{A x_{n}\right\}_{n=1}^{n \rightarrow \infty},\left\{T_{i} u_{n}\right\}_{n=1}^{\infty},\left\{B z_{n}\right\}_{n=1}^{\infty}$ and $\left\{y_{n, i}\right\}_{n=1}^{\infty}$, $i=1,2, \ldots$. For $m>n \geq 1$, we have that $x_{m}=P_{C_{m}} x_{0} \in C_{m} \subset C_{n}$. By (7), we obtain

$$
\begin{equation*}
\left\|x_{m}-x_{n}\right\|^{2} \leq\left\|x_{n}-x_{0}\right\|^{2}-\left\|x_{m}-x_{0}\right\|^{2} \tag{12}
\end{equation*}
$$

Letting $m, n \rightarrow \infty$ and taking the limit in (12), we have $x_{m}-x_{n} \rightarrow 0, m, n \rightarrow \infty$, which shows that $\left\{x_{n}\right\}_{n=0}^{\infty}$ is Cauchy. In particular, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. Since,
$\left\{x_{n}\right\}_{n=0}^{\infty}$ is Cauchy, we assume that $x_{n} \rightarrow z \in K$. Since $x_{n+1}=P_{C_{n+1}} x_{0} \in C_{n+1}$, then $\left\|y_{n, i}-x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\|$ and it follows that

$$
\left\|y_{n, i}-x_{n}\right\| \leq\left\|y_{n, i}-x_{n+1}\right\|+\left\|x_{n}-x_{n+1}\right\| \leq 2\left\|x_{n}-x_{n+1}\right\| .
$$

Thus,

$$
\lim _{n \rightarrow \infty}\left\|y_{n, i}-x_{n}\right\|=0, i=1,2, \ldots
$$

Furthermore,

$$
\begin{aligned}
& \left\|y_{n, i}-x^{*}\right\|^{2} \leq \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|T_{i} u_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n, i} \mid\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n, i} \mid\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|z_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n, i}| | x_{n}-x^{*}\left\|^{2}+\left(1-\alpha_{n, i}\right)\right\| T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)-T_{r_{n}}\left(x^{*}-r_{n} A x^{*}\right) \|^{2} \\
\leq & \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|\left(x_{n}-r_{n} A x_{n}\right)-\left(x^{*}-r_{n} A x^{*}\right)\right\|^{2} \\
\leq & \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left[\left\|x_{n}-x^{*}\right\|^{2}+r_{n}\left(r_{n}-2 \alpha\right)\left\|A x_{n}-A x^{*}\right\|^{2}\right] \\
= & \left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right) r_{n}\left(r_{n}-2 \alpha\right)\left\|A x_{n}-A x^{*}\right\|^{2} .
\end{aligned}
$$

Since $0<a \leq r_{n} \leq b<2 \alpha$ and $0 \leq \alpha_{n, i} \leq d_{i}<1$, we have

$$
\begin{aligned}
\left(1-d_{i}\right) a(2 \alpha-b)\left\|A x_{n}-A x^{*}\right\|^{2} & \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|y_{n, i}-x^{*}\right\|^{2} \\
& \leq\left\|y_{n, i}-x_{n}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n, i}-x^{*}\right\|\right)
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty}\left\|A x_{n}-A x^{*}\right\|=0$. From (9), we have

$$
\begin{align*}
\left\|y_{n, i}-x^{*}\right\|^{2} & \leq \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|T_{i} u_{n}-x^{*}\right\|^{2} \\
& \leq \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|u_{n}-x^{*}\right\|^{2} \tag{13}\\
& \leq \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|z_{n}-x^{*}\right\|^{2} .
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
& \left\|z_{n}-x^{*}\right\|^{2} \leq\left\|T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right)-T_{r_{n}}\left(x^{*}-r_{n} A x^{*}\right)\right\|^{2} \\
\leq & \left\langle\left(x_{n}-r_{n} A x_{n}\right)-\left(x^{*}-r_{n} A x^{*}\right), z_{n}-x^{*}\right\rangle \\
= & \frac{1}{2}\left[\left\|\left(x_{n}-r_{n} A x_{n}\right)-\left(x^{*}-r_{n} A x^{*}\right)\right\|^{2}+\left\|z_{n}-x^{*}\right\|^{2}\right. \\
& \left.-\left\|\left(x_{n}-r_{n} A x_{n}\right)-\left(x^{*}-r_{n} A x^{*}\right)-\left(z_{n}-x^{*}\right)\right\|^{2}\right] \\
\leq & \frac{1}{2}\left[\left\|x_{n}-x^{*}\right\|^{2}-\left\|\left(x_{n}-r_{n} A x_{n}\right)-\left(x^{*}-r_{n} A x^{*}\right)-\left(z_{n}-x^{*}\right)\right\|^{2}\right. \\
& \left.+\left\|z_{n}-x^{*}\right\|^{2}\right] \\
= & \frac{1}{2}\left[\left\|x_{n}-x^{*}\right\|^{2}+\left\|z_{n}-x^{*}\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2}+2 r_{n}\left\langle x_{n}-z_{n}, A x_{n}-A x^{*}\right\rangle\right. \\
& \left.-r_{n}^{2}\left\|A x_{n}-A x^{*}\right\|^{2}\right]
\end{aligned}
$$

and hence

$$
\begin{align*}
\left\|z_{n}-x^{*}\right\|^{2} \leq & \left\|x_{n}-x^{*}\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2}+2 r_{n}\left\langle x_{n}-z_{n}, A x_{n}-A x^{*}\right\rangle \\
& \quad r_{n}^{2}\left\|A x_{n}-A x^{*}\right\|^{2} \tag{14}\\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-\left\|z_{n}-x_{n}\right\|^{2}+2 r_{n}\left\|x_{n}-z_{n}\right\|\left\|A x_{n}-A x^{*}\right\| .
\end{align*}
$$

Putting (14) into (13), we have

$$
\left\|y_{n, i}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}-\left(1-\alpha_{n, i}\right)\left\|z_{n}-x_{n}\right\|^{2}+2 r_{n}\left\|x_{n}-z_{n}\right\|\left\|A x_{n}-A x^{*}\right\| .
$$

It follows that

$$
\begin{aligned}
\left(1-d_{i}\right)\left\|x_{n}-z_{n}\right\|^{2} & \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|y_{n, i}-x^{*}\right\|^{2}+2 r_{n}\left\|x_{n}-z_{n}\right\|\| \| A x_{n}-A x^{*} \| \\
& \leq\left\|y_{n, i}-x_{n}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n, i}-x^{*}\right\|\right)+2 r_{n}\left\|x_{n}-z_{n}\right\|\left\|A x_{n}-A x^{*}\right\| .
\end{aligned}
$$

Therefore, $\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0$. This implies that

$$
\left\|x_{n+1}-z_{n}\right\| \leq\left\|x_{n+1}-x_{n}\right\|+\left\|x_{n}-z_{n}\right\| \rightarrow 0, n \rightarrow \infty .
$$

Since $x_{n+1} \in C_{n+1}$, then

$$
\begin{equation*}
\left\|y_{n, i}-x_{n+1}\right\| \leq\left\|x_{n}-x_{n+1}\right\| \tag{15}
\end{equation*}
$$

But $y_{n, i}=\alpha_{n, i} x_{n}+\left(1-\alpha_{n, i}\right) T_{i} u_{n}$ implies that

$$
\begin{align*}
\left\|y_{n, i}-x_{n+1}\right\|^{2}= & \alpha_{n, i}\left\|x_{n}-x_{n+1}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|T_{i} u_{n}-x_{n+1}\right\|^{2} \\
& -\alpha_{n, i}\left(1-\alpha_{n, i}\right)\left\|x_{n}-T_{i} u_{n}\right\|^{2} . \tag{16}
\end{align*}
$$

Putting (16) into (15), we have
$\left(1-\alpha_{n, i}\right)\left\|T_{i} u_{n}-x_{n+1}\right\|^{2} \leq \alpha_{n, i}\left(1-\alpha_{n, i}\right)\left\|x_{n}-T_{i} u_{n}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|x_{n}-x_{n+1}\right\|^{2}$.
Thus,

$$
\begin{equation*}
\left\|T_{i} u_{n}-x_{n+1}\right\|^{2} \leq \alpha_{n, i}\left\|x_{n}-T_{i} u_{n}\right\|^{2}+\left\|x_{n}-x_{n+1}\right\|^{2} . \tag{17}
\end{equation*}
$$

But

$$
\begin{align*}
\left\|T_{i} u_{n}-x_{n+1}\right\|^{2}= & \left\|x_{n+1}-x_{n}\right\|^{2}+2\left\langle x_{n+1}-x_{n}, x_{n}-T_{i} u_{n}\right\rangle \\
& +\left\|x_{n}-T_{i} u_{n}\right\|^{2} . \tag{18}
\end{align*}
$$

Putting (18) into (17), we have

$$
\begin{aligned}
\left(1-d_{i}\right)\left\|x_{n}-T_{i} u_{n}\right\|^{2} & \leq-2\left\langle x_{n+1}-x_{n}, x_{n}-T_{i} u_{n}\right\rangle \\
& \leq 2\left\|x_{n+1}-x_{n}\right\|\left\|x_{n}-T_{i} u_{n}\right\| \rightarrow 0, n \rightarrow \infty .
\end{aligned}
$$

Hence, $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} u_{n}\right\|=0, i=1,2, \ldots$ Furthermore,

$$
\begin{aligned}
& \left\|y_{n, i}-x^{*}\right\|^{2} \leq \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|T_{i} u_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|P_{K}\left(z_{n}-\lambda_{n} B z_{n}\right)-P_{K}\left(x^{*}-\lambda_{n} B x^{*}\right)\right\|^{2} \\
\leq & \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|\left(z_{n}-\lambda_{n} B z_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right)\right\|^{2} \\
\leq & \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left[\left\|z_{n}-x^{*}\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \beta\right)\left\|B z_{n}-B x^{*}\right\|^{2}\right] \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right) \lambda_{n}\left(\lambda_{n}-2 \beta\right)\left\|B z_{n}-B x^{*}\right\|^{2} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left(1-\alpha_{n, i}\right) \lambda_{n}\left(2 \beta-\lambda_{n}\right)\left\|B z_{n}-B x^{*}\right\|^{2} & \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|y_{n, i}-x^{*}\right\|^{2} \\
& \leq\left\|y_{n, i}-x_{n}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n, i}-x^{*}\right\|\right)
\end{aligned}
$$

Since $0<c \leq \lambda_{n} \leq f<2 \beta, 0 \leq \alpha_{n, i} \leq d_{i}<1$, we have that $\lim _{n \rightarrow \infty}\left\|B z_{n}-B x^{*}\right\|=0$. Now, from (5), we obtain

$$
\begin{aligned}
& \left\|u_{n}-x^{*}\right\|^{2} \leq\left\|P_{K}\left(z_{n}-\lambda_{n} B z_{n}\right)-P_{K}\left(x^{*}-\lambda_{n} B x^{*}\right)\right\|^{2} \\
\leq & \left\langle\left(z_{n}-\lambda_{n} B z_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right), u_{n}-x^{*}\right\rangle \\
= & \frac{1}{2}\left[\left\|\left(z_{n}-\lambda_{n} B z_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right)\right\|^{2}+\left\|u_{n}-x^{*}\right\|^{2}\right. \\
- & \left.\left\|\left(z_{n}-\lambda_{n} B z_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right)-\left(u_{n}-x^{*}\right)\right\|^{2}\right] \\
\leq & \frac{1}{2}\left[\left\|z_{n}-x^{*}\right\|^{2}+\left\|u_{n}-x^{*}\right\|^{2}-\left\|\left(z_{n}-\lambda_{n} B z_{n}\right)-\left(x^{*}-\lambda_{n} B x^{*}\right)-\left(u_{n}-x^{*}\right)\right\|^{2}\right] \\
= & \frac{1}{2}\left[\left\|x_{n}-x^{*}\right\|^{2}+\left\|u_{n}-x^{*}\right\|^{2}-\left\|u_{n}-z_{n}\right\|^{2}+2 \lambda_{n}\left\langle z_{n}-u_{n}, B z_{n}-B x^{*}\right\rangle\right. \\
& \left.-\lambda_{n}^{2}\left\|B z_{n}-B x^{*}\right\|^{2}\right] .
\end{aligned}
$$

Thus,

$$
\left\|u_{n}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|u_{n}-z_{n}\right\|^{2}+2 \lambda_{n}\left\|z_{n}-u_{n}\right\|\left\|B z_{n}-B x^{*}\right\| .
$$

Using this last inequality, we obtain from (9) that

$$
\begin{aligned}
\left\|y_{n, i}-x^{*}\right\|^{2} \leq & \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|T_{i} u_{n}-x^{*}\right\|^{2} \\
\leq & \alpha_{n, i}\left\|x_{n}-x^{*}\right\|^{2}+\left(1-\alpha_{n, i}\right)\left\|u_{n}-x^{*}\right\|^{2} \\
\leq & \left\|x_{n}-x^{*}\right\|^{2}-\left(1-\alpha_{n, i}\right)\left\|u_{n}-z_{n}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\alpha_{n, i}\right)\left\|u_{n}-z_{n}\right\|\left\|B z_{n}-B x^{*}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
\left(1-\alpha_{n, i}\right)\left\|u_{n}-z_{n}\right\|^{2} \leq & \left\|x_{n}-x^{*}\right\|^{2}-\left\|y_{n, i}-x^{*}\right\|^{2} \\
& +2 \lambda_{n}\left(1-\alpha_{n, i}\right)\left\|u_{n}-z_{n}\right\|\left\|B z_{n}-B x^{*}\right\| \\
\leq & \left\|y_{n, i}-x_{n}\right\|\left(\left\|x_{n}-x^{*}\right\|+\left\|y_{n, i}-x^{*}\right\|\right) \\
& +2 \lambda_{n}\left(1-\alpha_{n, i}\right)\left\|u_{n}-z_{n}\right\|\left\|B z_{n}-B x^{*}\right\|
\end{aligned}
$$

Since $0 \leq \alpha_{n, i} \leq d_{i}<1$, we have $\lim _{n \rightarrow \infty}\left\|u_{n}-z_{n}\right\|=0$. Consequently,

$$
\begin{aligned}
\left\|x_{n}-T_{i} x_{n}\right\| & \leq\left\|x_{n}-T_{i} u_{n}\right\|+\left\|T_{i} u_{n}-T_{i} x_{n}\right\| \\
& \leq\left\|x_{n}-T_{i} u_{n}\right\|+\left\|u_{n}-x_{n}\right\| \\
& \leq\left\|x_{n}-T_{i} u_{n}\right\|+\left\|u_{n}-z_{n}\right\|+\left\|z_{n}-x_{n}\right\| .
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty}\left\|x_{n}-z_{n}\right\|=0, \lim _{n \rightarrow \infty}\left\|u_{n}-z_{n}\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} u_{n}\right\|=0$, we have that $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} x_{n}\right\|=0, i=1,2, \ldots$ Now, by $\lim _{n \rightarrow \infty}\left\|x_{n}-z\right\|=0$ and $\lim _{n \rightarrow \infty}\left\|x_{n}-T_{i} x_{n}\right\|=0, i=1,2, \ldots$, we have that $z \in \bigcap_{i=1}^{\infty} F\left(T_{i}\right)$.
We next show that $z \in E P$. Since $z_{n}:=T_{r_{n}}\left(x_{n}-r_{n} A x_{n}\right), n \geq 1$, we have for any $y \in K$ that

$$
F\left(z_{n}, y\right)+\left\langle A x_{n}, y-z_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-z_{n}, z_{n}-x_{n}\right\rangle \geq 0
$$

Furthermore, replacing n by n_{j} in the last inequality and using (A2), we obtain

$$
\begin{equation*}
\left\langle A x_{n_{j}}, y-z_{n_{j}}\right\rangle+\frac{1}{r_{n_{j}}}\left\langle y-z_{n_{j}}, z_{n_{j}}-x_{n_{j}}\right\rangle \geq F\left(y, z_{n_{j}}\right) . \tag{19}
\end{equation*}
$$

Let $z_{t}:=t y+(1-t) z$ for all $t \in(0,1]$ and $y \in K$. This implies that $z_{t} \in K$. Then, by (19), we have

$$
\begin{aligned}
\left\langle z_{t}-z_{n_{j}}, A z_{t}\right\rangle \geq & \left\langle z_{t}-z_{n_{j}}, A z_{t}\right\rangle-\left\langle z_{t}-z_{n_{j}}, A x_{n_{j}}\right\rangle-\left\langle z_{t}-z_{n_{j}}, \frac{z_{n_{j}}-x_{n_{j}}}{r_{n_{j}}}\right\rangle+F\left(z_{t}, z_{n_{j}}\right) \\
= & \left\langle z_{t}-z_{n_{j}}, A z_{t}-A z_{n_{j}}\right\rangle+\left\langle z_{t}-z_{n_{j}}, A z_{n_{j}}-A x_{n_{j}}\right\rangle \\
& -\left\langle z_{t}-z_{n_{j}}, \frac{z_{n_{j}}-x_{n_{j}}}{r_{n_{j}}}\right\rangle+F\left(z_{t}, z_{n_{j}}\right) .
\end{aligned}
$$

Since $\left\|x_{n_{j}}-z_{n_{j}}\right\| \rightarrow 0, j \rightarrow \infty$, we obtain $\left\|A x_{n_{j}}-A z_{n_{j}}\right\| \rightarrow 0, j \rightarrow \infty$.
Furthermore, by the monotonicity of A, we obtain $\left\langle z_{t}-z_{n_{j}}, A z_{t}-A z_{n_{j}}\right\rangle \geq 0$. Then, by ($A 4$) we obtain

$$
\begin{equation*}
\left\langle z_{t}-z, A z_{t}\right\rangle \geq F\left(z_{t}, z\right), j \rightarrow \infty \tag{20}
\end{equation*}
$$

Using ($A 1$), ($A 4$) and (20) we also obtain

$$
\begin{aligned}
0 & =F\left(z_{t}, z_{t}\right) \leq t F\left(z_{t}, y\right)+(1-t) F\left(z_{t}, z\right) \\
& \leq t F\left(z_{t}, y\right)+(1-t)\left\langle z_{t}-z, A z_{t}\right\rangle \\
& =t F\left(z_{t}, y\right)+(1-t) t\left\langle y-z, A z_{t}\right\rangle
\end{aligned}
$$

and hence

$$
0 \leq F\left(z_{t}, y\right)+(1-t)\left\langle y-z, A z_{t}\right\rangle
$$

Letting $t \rightarrow 0$, we have, for each $y \in C$,

$$
\begin{equation*}
0 \leq F(z, y)+\langle y-z, A z\rangle \tag{21}
\end{equation*}
$$

This implies that $z \in E P$.
Following the line of arguments of Theorem 3.1, page 346-347 of [10], we can show that $z \in V I(K, B)$. Therefore, $z \in \bigcap_{i=1}^{\infty} F\left(T_{i}\right) \bigcap E P \bigcap V I(K, B)$.
Noting that $x_{n}=P_{C_{n}} x_{0}$, we have by (6) that

$$
\left\langle x_{0}-x_{n}, y-x_{n}\right\rangle \leq 0,
$$

for all $y \in C_{n}$. Since $F \subset C_{n}$, we obtain from the above inequality that

$$
\left\langle x_{0}-z, y-z\right\rangle \leq 0
$$

for all $y \in F$. By (6), we conclude that $z=P_{F} x_{0}$. This completes the proof.

Corollary 2. Let K be a closed convex nonempty subset of a real Hilbert space H. Let F be a bi-function from $K \times K$ satisfying $(A 1)-(A 4)$ and for each $i=1,2, \ldots$, let $T_{i}: K \rightarrow K$ be a nonexpansive mapping. Let S be a k-strictly pseudocontractive map of K into H. Suppose $F:=\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \bigcap E P(F) \bigcap F(S) \neq$ Ø. Let $\left\{z_{n}\right\}_{n=1}^{\infty}, \quad\left\{y_{n, i}\right\}_{n=1}^{\infty}(i=1,2, \ldots)$ and $\left\{x_{n}\right\}_{n=0}^{\infty}$ be generated by $x_{0} \in K$,

$$
\left\{\begin{array}{l}
C_{1, i}=K, C_{1}=\bigcap_{i=1}^{\infty} C_{1, i} \\
x_{1}=P_{C_{1}} x_{0} \\
F\left(z_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-z_{n}, z_{n}-x_{n}\right\rangle \geq 0 \forall y \in K, n \geq 1 \\
u_{n}=P_{K}\left(\left(1-\lambda_{n}\right) z_{n}+\lambda_{n} S z_{n}\right) \\
y_{n, i}=\alpha_{n, i} x_{n}+\left(1-\alpha_{n, i}\right) T_{i} u_{n}, n \geq 1 \\
C_{n+1, i}=\left\{z \in C_{n, i}:\left\|y_{n, i}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, n \geq 1 \\
C_{n+1}=\bigcap_{i=1}^{\infty} C_{n+1, i} \\
x_{n+1}=P_{C_{n+1}} x_{0}, n \geq 1
\end{array}\right.
$$

Assume that $\left\{\alpha_{n, i}\right\}_{n=1}^{\infty} \subset[0,1)(i=1,2, \ldots),\left\{r_{n}\right\}_{n=1}^{\infty} \subset(0, \infty)$ and $\left\{\lambda_{n}\right\}_{n=1}^{\infty} \subset$ $[0,1-k]$ satisfy

$$
\liminf _{n \rightarrow \infty} r_{n}>0,0<c \leq \lambda_{n} \leq f<1-k, 0 \leq \alpha_{n, i} \leq d_{i}<1
$$

Then, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $P_{F} x_{0}$.
Proof. Let $B:=I-S$, where S is k-strictly pseudocontractive map. Then, B is $\frac{1-k}{2}$ inverse-strongly monotone. Furthermore, putting $A \equiv 0$ in Theorem 1 , we obtain the desired result.

Corollary 3. Let K be a closed convex nonempty subset of a real Hilbert space H. Let A be an α-inverse-strongly monotone mapping of K into H, B be an β-inverse-strongly monotone mapping of K into H and for each $i=1,2, \ldots$, let $T_{i}: K \rightarrow K$ be a nonexpansive mapping. Suppose
$F:=\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \bigcap V I(K, A) \bigcap V I(K, B) \neq \emptyset$. Let $\left\{z_{n}\right\}_{n=1}^{\infty},\left\{y_{n, i}\right\}_{n=1}^{\infty}(i=1,2, \ldots)$
and $\left\{x_{n}\right\}_{n=0}^{\infty}$ be generated by $x_{0} \in K$,

$$
\left\{\begin{array}{l}
C_{1, i}=K, C_{1}=\bigcap_{i=1}^{\infty} C_{1, i} \\
x_{1}=P_{C_{1}} x_{0} \\
z_{n}=P_{K}\left(x_{n}-r_{n} A x_{n}\right), n \geq 1 \\
u_{n}=P_{K}\left(z_{n}-\lambda_{n} B z_{n}\right), n \geq 1 \\
y_{n, i}=\alpha_{n, i} x_{n}+\left(1-\alpha_{n, i}\right) T_{i} u_{n}, n \geq 1 \\
C_{n+1, i}=\left\{z \in C_{n, i}:\left\|y_{n, i}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, n \geq 1 \\
C_{n+1}=\bigcap_{i=1}^{\infty} C_{n+1, i} \\
x_{n+1}=P_{C_{n+1}} x_{0}, n \geq 1
\end{array}\right.
$$

Assume that $\left\{\alpha_{n, i}\right\}_{n=1}^{\infty} \subset[0,1)(i=1,2, \ldots),\left\{r_{n}\right\}_{n=1}^{\infty} \subset[0,2 \alpha]$ and $\left\{\lambda_{n}\right\}_{n=1}^{\infty} \subset[0,2 \beta]$ satisfy

$$
0<a \leq r_{n} \leq b<2 \alpha, 0<c \leq \lambda_{n} \leq f<2 \beta, 0 \leq \alpha_{n, i} \leq d_{i}<1 .
$$

Then, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $P_{F} x_{0}$.
Proof. Taking $F(x, y)=0, \forall x, y \in K$ in Theorem 1, we have

$$
\left\langle A x_{n}, y-z_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-z_{n}, z_{n}-x_{n}\right\rangle \geq 0 \forall y \in K, \forall n \geq 1
$$

Thus

$$
\left\langle y-z_{n}, x_{n}-r_{n} A x_{n}-z_{n}\right\rangle \leq 0 \forall y \in K, \forall n \geq 1 .
$$

This implies

$$
P_{K}\left(x_{n}-r_{n} A x_{n}\right)=z_{n}, \forall n \geq 1 .
$$

Hence, the desired conclusion follows from Theorem 1.
Corollary 4. Let K be a closed convex nonempty subset of a real Hilbert space H. Let B be an β-inverse-strongly monotone mapping of K into H. For each $i=1,2, \ldots$, let $T_{i}: K \rightarrow K$ be a nonexpansive mapping. Suppose
$\bigcap_{i=1}^{\infty} F\left(T_{i}\right) \bigcap V I(K, B) \neq \emptyset$. Let $\left\{z_{n}\right\}_{n=1}^{\infty},\left\{y_{n, i}\right\}_{n=1}^{\infty}(i=1,2, \ldots)$ and $\left\{x_{n}\right\}_{n=0}^{\infty}$ be generated by $x_{0} \in K$,

$$
\left\{\begin{array}{l}
C_{1, i}=K, C_{1}=\bigcap_{i=1}^{\infty} C_{1, i} \\
x_{1}=P_{C_{1}} x_{0} \\
u_{n}=P_{K}\left(x_{n}-\lambda_{n} B x_{n}\right), n \geq 1 \\
y_{n, i}=\alpha_{n, i} x_{n}+\left(1-\alpha_{n, i}\right) T_{i} u_{n}, n \geq 1 \\
C_{n+1, i}=\left\{z \in C_{n, i}:\left\|y_{n, i}-z\right\| \leq\left\|x_{n}-z\right\|\right\}, n \geq 1 \\
C_{n+1}=\bigcap_{i=1}^{\infty} C_{n+1, i} \\
x_{n+1}=P_{C_{n+1}} x_{0}, n \geq 1 .
\end{array}\right.
$$

Assume that $\left\{\alpha_{n, i}\right\}_{n=1}^{\infty} \subset[0,1)(i=1,2, \ldots)$ and $\left\{\lambda_{n}\right\}_{n=1}^{\infty} \subset[0,2 \beta]$ satisfy

$$
0<c \leq \lambda_{n} \leq f<2 \beta, 0 \leq \alpha_{n, i} \leq d_{i}<1 .
$$

Then, $\left\{x_{n}\right\}_{n=0}^{\infty}$ converges strongly to $P_{F} x_{0}$.
Proof. Taking $F(x, y)=0, \forall x, y \in K, A \equiv 0$ and $r_{n}=1$ in Theorem 1, we have the desired conclusion from Theorem 1.

References

1. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123-145.
2. F. E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780-785.
3. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197-228.
4. R. E. Bruck, On weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space, J. Math. Anal. Appl. 61 (1977), 159164.
5. G. Cai and C. S. Hu, A hybrid approximation method for equilibrium and fixed points problems for a family of infinitely nonexpansive mappings and a monotone mapping, Nonlinear Anal. (2009), doi:10.1016/j.nahs.2009.02.007.
6. G. Cai and C. S. Hu, Strong convergence theorems of modified Ishikawa iteration process with errors for an infinite family of strict pseudo-contractions, Nonlinear Anal. (2009), doi:10.1016/j.na.2009.05.051.
7. V. Colao, G. Acedo and G. Marino, An implicit method for finding common solutions for variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings, Nonlinear Anal. 71 (2009), 2708-2715.
8. Y. J. Cho, X. Qin and J. I. Kang, Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems, Nonlinear Anal. 71 (2009), 42034214.
9. P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117-136.
10. H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings, Nonlinear Anal. 61 (2005), 341-350.
11. A. Moudaf, Weak convergence theorems for nonexpansive mappings and equilibrium problems, J. Nonlinear Convex Anal. (in press).
12. A. Moudafi and M. Thera, Proximal and dynamical approaches to equilibrium problems, in Lecture notes in economics and mathematical systems 477, Springer, (1999), 187-201.
13. E. U. Ofoedu, Y. Shehu and J. N. Ezeora, Solution by iteration of nonlinear variational inequalities involving finite family of asymptotically nonexpansive mappings and monotone mappings, PanAmer. Math. J., 18(4), (2008), 61-72.
14. J. W. Peng and J. C. Yao, A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings, Nonlinear Anal., doi:10.1016/j.na.2009.05.028.
15. J. W. Peng and J. C. Yao, Strong convergence theorems of an iterative scheme based on extragradient method for mixed equilibrium problems and fixed points problems, Math.Com.Model. 49 (2009), 1816-1828.
16. S. Plubtieng and P. Kumam, Weak convergence theorems for monotone mappings and countable family of nonexpansive mappings, Com.Appl.Math. 224 (2009), 614-621.
17. S. Plubtieng and R. Punpaeng A new iterative method for equilibrium problems and fixed point problems for nonexpansive mappings and monotone mappings, Appl. Math. Com. 197 (2008), 548-558.
18. X. Qin, M. Shang and Y. Su, Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems, Math.Com.Model. 48 (2008), 1033-1046.
19. Rabian Wangkeeree, An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings, Journal of Fixed Point Theory and Applications, vol 2008, Article ID 134148, 17 pages, 2008.
20. Y. Shehu and J. N. Ezeora, An iterative method involving finite family of asymptotically nonexpansive mappings and monotone mappings in Hilbert spaces, PanAmer. Math. J. 19(2), (2009), 99-112.
21. Y. Song and Y. Zheng, Strong convergence of iteration algorithm for a countable family of nonexpansive mappings, Nonlinear Anal. 71 (2009), 3072-3082.
22. S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Anal. 69 (2008), 10251033.
23. S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506-518.
24. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003) 417-428.
25. Y. Yao, Y. J. Cho and R. Chen, An iterative algorithm for solving fixed point problems, variational inequality problems, mixed equilibrium problems, Nonlinear Anal. 71 (2009), 3363-3373.
26. J. Zhao and S. He; A new iterative method for equilibrium problems and fixed points problems for infinite nonexpansive mappings and monotone mappings, Appl.Math.Com. doi:10.1016/j.amc.2009.05.041.

Yekini Shehu received his B.Tech from Ladoke Akintola University of Technology(LAUTECH) and Ph.D at University of Nigeria. His research interests focus on the nonlinear operator theory and nonlinear functional analysis.

Obiora Collins received his B.Sc from University of Nigeria(UNN) and a Ph.D student at University of Nigeria. His research interests focus on the applied mathematics and nonlinear functional analysis.
Department of Mathematics, University of Nigeria, Nsukka, Nigeria.
e-mail: deltanougt2006@yahoo.com, obiora.collins@yahoo.com

[^0]: Received November 30, 2009. Revised December 3, 2009. Accepted December 23, 2009. * Corresponding author.
 (C) 2010 Korean SIGCAM and KSCAM.

