• Title/Summary/Keyword: variational inequality problems

Search Result 77, Processing Time 0.026 seconds

ALTERNATED INERTIAL RELAXED TSENG METHOD FOR SOLVING FIXED POINT AND QUASI-MONOTONE VARIATIONAL INEQUALITY PROBLEMS

  • A. E. Ofem;A. A. Mebawondu;C. Agbonkhese;G. C. Ugwunnadi;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.131-164
    • /
    • 2024
  • In this research, we study a modified relaxed Tseng method with a single projection approach for solving common solution to a fixed point problem involving finite family of τ-demimetric operators and a quasi-monotone variational inequalities in real Hilbert spaces with alternating inertial extrapolation steps and adaptive non-monotonic step sizes. Under some appropriate conditions that are imposed on the parameters, the weak and linear convergence results of the proposed iterative scheme are established. Furthermore, we present some numerical examples and application of our proposed methods in comparison with other existing iterative methods. In order to show the practical applicability of our method to real word problems, we show that our algorithm has better restoration efficiency than many well known methods in image restoration problem. Our proposed iterative method generalizes and extends many existing methods in the literature.

INERTIAL EXTRAPOLATION METHOD FOR SOLVING SYSTEMS OF MONOTONE VARIATIONAL INCLUSION AND FIXED POINT PROBLEMS USING BREGMAN DISTANCE APPROACH

  • Hammed A. Abass;Ojen K. Narain;Olayinka M. Onifade
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.497-520
    • /
    • 2023
  • Numerous problems in science and engineering defined by nonlinear functional equations can be solved by reducing them to an equivalent fixed point problem. Fixed point theory provides essential tools for solving problems arising in various branches of mathematical analysis, such as split feasibility problems, variational inequality problems, nonlinear optimization problems, equilibrium problems, complementarity problems, selection and matching problems, and problems of proving the existence of solution of integral and differential equations.The theory of fixed is known to find its applications in many fields of science and technology. For instance, the whole world has been profoundly impacted by the novel Coronavirus since 2019 and it is imperative to depict the spread of the coronavirus. Panda et al. [24] applied fractional derivatives to improve the 2019-nCoV/SARS-CoV-2 models, and by means of fixed point theory, existence and uniqueness of solutions of the models were proved. For more information on applications of fixed point theory to real life problems, authors should (see [6, 13, 24] and the references contained in).

A HYBRID PROXIMAL POINT ALGORITHM AND STABILITY FOR SET-VALUED MIXED VARIATIONAL INCLUSIONS INVOLVING (A, ${\eta}$)-ACCRETIVE MAPPINGS

  • Kim, Jong-Kyu;Li, Hong Gang
    • East Asian mathematical journal
    • /
    • v.26 no.5
    • /
    • pp.703-714
    • /
    • 2010
  • A new class of nonlinear set-valued mixed variational inclusions involving (A, ${\eta}$)-accretive mappings in Banach spaces is introduced and studied, which includes many kind of variational inclusion (inequality) and complementarity problems as special cases. By using the resolvent operator associated with (A, ${\eta}$)-accretive operator due to Lan-Cho-Verma, the existence of solution for this kind of variational inclusion is proved, and a new hybrid proximal point algorithm is established and suggested, the convergence and stability theorems of iterative sequences generated by new iterative algorithms are also given in q-uniformly smooth Banach spaces.

SETVALUED MIXED QUASI-EQUILIBRIUM PROBLEMS WITH OPERATOR SOLUTIONS

  • Ram, Tirth;Khanna, Anu Kumari;Kour, Ravdeep
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.83-97
    • /
    • 2022
  • In this paper, we introduce and study generalized mixed operator quasi-equilibrium problems(GMQOEP) in Hausdorff topological vector spaces and prove the existence results for the solution of (GMQOEP) in compact and noncompact settings by employing 1-person game theorems. Moreover, using coercive condition, hemicontinuity of the functions and KKM theorem, we prove new results on the existence of solution for the particular case of (GMQOEP), that is, generalized mixed operator equilibrium problem (GMOEP).

VECTOR EQUILIBRIUM PROBLEMS FOR TRIFUNCTION IN MEASURABLE SPACE AND ITS APPLICATIONS

  • RAM, TIRTH;KHANNA, ANU KUMARI
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.3_4
    • /
    • pp.577-585
    • /
    • 2022
  • In this work, we introduced and study vector equilibrium problems for trifunction in measurable space (for short, VEPMS). The existence of solutions of (VEPMS) are obtained by employing Aumann theorem and Fan KKM lemma. As an application, we prove an existence result for vector variational inequality problem for measurable space. Our results in this paper are new which can be considered as significant extension of previously known results in the literature.

NEW PROXIMAL ALGORITHMS FOR A CLASS OF $(A,\;{\eta})-ACCRETIVE$ VARIATIONAL INCLUSION PROBLEMS WITH NON-ACCRETIVE SET-VALUED MAPPINGS

  • Lan, Heng-You
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.255-267
    • /
    • 2007
  • In this work, by using Xu's inequality, Nalder's results, the notion of $(A,\;{\eta})-accretive$ mappings and the new resolvent operator technique associated with $(A,\;{\eta})-accretive$ mappings due to Lan et al., we study the existence of solutions for a new class of $(A,\;{\eta})-accretive$ variational inclusion problems with non-accretive set-valued mappings and the convergence of the iterative sequences generated by the algorithms in Banach spaces. Our results are new and extend, improve and unify the corresponding results in this field.

A Travel Time Prediction Model under Incidents (돌발상황하의 교통망 통행시간 예측모형)

  • Jang, Won-Jae
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • Traditionally, a dynamic network model is considered as a tool for solving real-time traffic problems. One of useful and practical ways of using such models is to use it to produce and disseminate forecast travel time information so that the travelers can switch their routes from congested to less-congested or uncongested, which can enhance the performance of the network. This approach seems to be promising when the traffic congestion is severe, especially when sudden incidents happen. A consideration that should be given in implementing this method is that travel time information may affect the future traffic condition itself, creating undesirable side effects such as the over-reaction problem. Furthermore incorrect forecast travel time can make the information unreliable. In this paper, a network-wide travel time prediction model under incidents is developed. The model assumes that all drivers have access to detailed traffic information through personalized in-vehicle devices such as car navigation systems. Drivers are assumed to make their own travel choice based on the travel time information provided. A route-based stochastic variational inequality is formulated, which is used as a basic model for the travel time prediction. A diversion function is introduced to account for the motorists' willingness to divert. An inverse function of the diversion curve is derived to develop a variational inequality formulation for the travel time prediction model. Computational results illustrate the characteristics of the proposed model.