Acknowledgement
The authors would like to thanks all the anonymous referees for their valuable comments and suggestions which have been proved helpful for the improvement of the paper.
References
- I. Ahmad, S.S. Irfan and R. Ahmed, Generalized composite vector equilibrium problem, Bull. Math. Anal. Appl., 9(1) (2017), 109-122.
- R. Ahmad, S.S. Irfan, M. Ishtyak and M. Rahman, Existence of solutions for operator mixed vector equilibrium problem, J. Ineq. Special Funct., 8(5) (2017), 66-74.
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, J. Math. Student, 63(1-4) (1994), 123-145.
- X.P. Ding, W.K. Kim and K.K. Tan, Equilibria of non-compact generalized game with L*-majerized preferences, J. Math. Anal. Appl., 164 (1992), 508-517. https://doi.org/10.1016/0022-247x(92)90130-6
- X.P. Ding, W.K. Kim and K.K. Tan, Equilibria of non-compact generalized game with L-majerized correspondences, Int. J. Math. Math. Sci., 17 (1994), 783-790. https://doi.org/10.1155/S0161171294001092
- A. Domokos and J. Kolumban, Variational inequalities with operator solutions, J. Global. Optim., 23 (2002), 99-110. https://doi.org/10.1023/A:1014096127736
- K. Fan, A minimax inequality and applications, in Inequalities III, Shisha, pp. 103-113, Academic Press 1972.
- S.S. Irfan, I. Ahmed, P. Shukla, Z.A. Khan and M. Aslam, Generalized implicit vector equilibrium problem, Commu. Appl. Nonlinear Anal., 28(3) (2021), 71-82.
- S.S. Irfan, M.F. Khan and R.U. Verma, On generalized equilibrium problem, Adv. Nonlinear Var. Ineq., 19(2) (2016), 14-26.
- K.R Kazmi and A. Raouf, A class of operator equilibrium problems, J. Math. Anal. Appl., 308 (2005), 554-564. https://doi.org/10.1016/j.jmaa.2004.11.062
- K.R. Kazmi, A variational principle for vector equilibrium problem, Proc. Indian Acad. Sci., (Math. Sci.) 111 (2001), 465-470. https://doi.org/10.1007/BF02829618
- K.R. Kazmi, On vector equilibrium problems, Proc. Indian Acad. Sci. (Math Sci.) 110 (2000), 213-223. https://doi.org/10.1007/BF02829492
- J.K. Kim and A. Raouf, A class of generalized operator equilibrium problems, Filomat 31(1) (2017), 1-8. https://doi.org/10.2298/FIL1701001K
- J.K. Kim and Salahuddin, Existence of solutions for multi-valued equilibrium problems, Nonlinear Funct. Anal. Appl., 23(4) (2018), 779-795. https://doi.org/10.22771/NFAA.2018.23.04.14
- S. Kum and W.K. Kim, Generalized vector variational and quasi-variational inequalities with operator solutions, J. Glob. Optim., 32 (2005), 581-595. https://doi.org/10.1007/s10898-004-2695-6
- S. Kum, A variant of generalized vector variational inequality with operator solutions, Commun. Korean Math. Soc., 21 (2006), 665-676. https://doi.org/10.4134/CKMS.2006.21.4.665
- S. Kum and W.K. Kim, Applications of generalized variational and quasi variational inequalities with operator solutions in a TVS, J. Optim. Theory Appl., 133 (2007), 65-75. https://doi.org/10.1007/s10957-007-9175-3
- G.M. Lee, D.S. Kim and B.S. Lee, On non-cooperative vector equilibrium, Indian J. Pure Appl. Math., 27 (1996), 735-739.
- L. Qun, Generalized vector variational-like inequalities, In Vector variational inequalities and vector-equilibria, Nonconvex Optim. Appl., 38 Kluwer Acad. Publ. Dordrecht 2000, 363-369. https://doi.org/10.1007/978-1-4613-0299-5_21
- O.K. Oyewole and O.T. Mewomo, Existence results for new generalized mixed equilibrium and fixed point problems in Banach spaces, Nonlinear Funct. Anal. Appl., 25(2) (2020), 273-301. https://doi.org/10.22771/NFAA.2020.25.02.06
- T. Ram, On existence of operator solutions of generalized vector quasi-variational inequalities, Commun. Optim. Theory, 2015 (2015), Article ID 1.
- T. Ram and A.K. Khanna, On generalized weak operator quasi equilibrium problems, Global J. Pure Appl. Math., 13(8) (2017), 4189-4198.
- T. Ram, P. Lal and J.K. Kim Operator solutions of generalized equilibrium problems in Hausdorff topological vector spaces, Nonlinear Funct. Anal. Appl., 24(1) (2019), 61-71.
- J. Salamon, On operator equilibrium problems, Math. Commun., 19 (2014), 581-587.