• 제목/요약/키워드: variational inequality problem

검색결과 95건 처리시간 0.022초

ERROR BOUNDS FOR NONLINEAR MIXED VARIATIONAL-HEMIVARIATIONAL INEQUALITY PROBLEMS

  • A. A. H. Ahmadini;Salahuddin;J. K. Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권1호
    • /
    • pp.15-33
    • /
    • 2024
  • In this article, we considered a class of nonlinear variational hemivariational inequality problems and investigated a gap function and regularized gap function for the problems. We discussed the global error bounds for such inequalities in terms of gap function and regularized gap functions by utilizing the Clarke generalized gradient, relaxed monotonicity, and relaxed Lipschitz continuous mappings. Finally, as applications, we addressed an application to non-stationary non-smooth semi-permeability problems.

Convergence of an Iterative Algorithm for Systems of Variational Inequalities and Nonlinear Mappings in Banach Spaces

  • JEONG, JAE UG
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.933-951
    • /
    • 2015
  • In this paper, we consider the problem of convergence of an iterative algorithm for a general system of variational inequalities, a nonexpansive mapping and an ${\eta}$-strictly pseudo-contractive mapping. Strong convergence theorems are established in the framework of real Banach spaces.

A NEW EXPLICIT EXTRAGRADIENT METHOD FOR SOLVING EQUILIBRIUM PROBLEMS WITH CONVEX CONSTRAINTS

  • Muangchoo, Kanikar
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권1호
    • /
    • pp.1-22
    • /
    • 2022
  • The purpose of this research is to formulate a new proximal-type algorithm to solve the equilibrium problem in a real Hilbert space. A new algorithm is analogous to the famous two-step extragradient algorithm that was used to solve variational inequalities in the Hilbert spaces previously. The proposed iterative scheme uses a new step size rule based on local bifunction details instead of Lipschitz constants or any line search scheme. The strong convergence theorem for the proposed algorithm is well-proven by letting mild assumptions about the bifunction. Applications of these results are presented to solve the fixed point problems and the variational inequality problems. Finally, we discuss two test problems and computational performance is explicating to show the efficiency and effectiveness of the proposed algorithm.

ON ITERATIVE APPROXIMATION OF COMMON FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS WITH APPLICATIONS

  • Kim, Jong Kyu;Qin, Xiaolong;Lim, Won Hee
    • East Asian mathematical journal
    • /
    • 제28권5호
    • /
    • pp.617-630
    • /
    • 2012
  • In this paper, the problem of iterative approximation of common fixed points of asymptotically nonexpansive is investigated in the framework of Banach spaces. Weak convergence theorems are established. A necessary and sufficient condition for strong convergence is also discussed. As an application of main results, a variational inequality is investigated.

An incremental convex programming model of the elastic frictional contact problems

  • Mohamed, S.A.;Helal, M.M.;Mahmoud, F.F.
    • Structural Engineering and Mechanics
    • /
    • 제23권4호
    • /
    • pp.431-447
    • /
    • 2006
  • A new incremental finite element model is developed to simulate the frictional contact of elastic bodies. The incremental convex programming method is exploited, in the framework of finite element approach, to recast the variational inequality principle of contact problem in a discretized form. The non-classical friction model of Oden and Pires is adopted, however, the friction effect is represented by an equivalent non-linear stiffness rather than additional constraints. Different parametric studies are worked out to address the versatility of the proposed model.

STRONG CONVERGENCE OF A METHOD FOR VARIATIONAL INEQUALITY PROBLEMS AND FIXED POINT PROBLEMS OF A NONEXPANSIVE SEMIGROUP IN HILBERT SPACES

  • Buong, Nguyen
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.61-74
    • /
    • 2011
  • In this paper, we introduce a new iteration method based on the hybrid method in mathematical programming and the descent-like method for finding a common element of the solution set for a variational inequality and the set of common fixed points of a nonexpansive semigroup in Hilbert spaces. We obtain a strong convergence for the sequence generated by our method in Hilbert spaces. The result in this paper modifies and improves some well-known results in the literature for a more general problem.

NONLINEAR ALGORITHMS FOR A COMMON SOLUTION OF A SYSTEM OF VARIATIONAL INEQUALITIES, A SPLIT EQUILIBRIUM PROBLEM AND FIXED POINT PROBLEMS

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • 제24권3호
    • /
    • pp.495-524
    • /
    • 2016
  • In this paper, we propose an iterative algorithm for finding a common solution of a system of generalized equilibrium problems, a split equilibrium problem and a hierarchical fixed point problem over the common fixed points set of a finite family of nonexpansive mappings in Hilbert spaces. Furthermore, we prove that the proposed iterative method has strong convergence under some mild conditions imposed on algorithm parameters. The results presented in this paper improve and extend the corresponding results reported by some authors recently.

A PARALLEL HYBRID METHOD FOR EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND NONEXPANSIVE MAPPINGS IN HILBERT SPACE

  • Hieu, Dang Van
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.373-388
    • /
    • 2015
  • In this paper, a novel parallel hybrid iterative method is proposed for finding a common element of the set of solutions of a system of equilibrium problems, the set of solutions of variational inequalities for inverse strongly monotone mappings and the set of fixed points of a finite family of nonexpansive mappings in Hilbert space. Strong convergence theorem is proved for the sequence generated by the scheme. Finally, a parallel iterative algorithm for two finite families of variational inequalities and nonexpansive mappings is established.

A GENERAL ITERATIVE METHOD BASED ON THE HYBRID STEEPEST DESCENT SCHEME FOR VARIATIONAL INCLUSIONS, EQUILIBRIUM PROBLEMS

  • Tian, Ming;Lan, Yun Di
    • Journal of applied mathematics & informatics
    • /
    • 제29권3_4호
    • /
    • pp.603-619
    • /
    • 2011
  • To the best of our knowledge, it would probably be the first time in the literature that we clarify the relationship between Yamada's method and viscosity iteration correctly. We design iterative methods based on the hybrid steepest descent algorithms for solving variational inclusions, equilibrium problems. Our results unify, extend and improve the corresponding results given by many others.

A NOTE ON A FINITE ELEMENT METHOD DEALING WITH CORNER SINGULARITIES

  • Kim, Seok-Chan;Woo, Gyung-Soo;Park, Tae-Hoon
    • Journal of applied mathematics & informatics
    • /
    • 제7권2호
    • /
    • pp.493-506
    • /
    • 2000
  • Recently the first author and his coworker report a new finite element method for the Poisson equations with homogeneous Dirichlet boundary conditions on a polygonal domain with one re-entrant angle [7], They use the well-known fact that the solution of such problem has a singular representation, deduced a well-posed new variational problem for a regular part of solution and an extraction formula for the so-called stress intensity factor using tow cut-off functions. They use Fredholm alternative an Garding's inequality to establish the well-posedness of the variational problem and finite element approximation, so there is a maximum bound for mesh h theoretically. although the numerical experiments shows the convergence for every reasonable h with reasonable size y imposing a restriction to the support of the extra cut-off function without using Garding's inequality. We also give error analysis with similar results.