• Title/Summary/Keyword: variation of channel bed

Search Result 40, Processing Time 0.024 seconds

The Variation of Channel Bed by Location of Pier near 90° Channel Junction (90° 합류부를 지닌 수로에서 교각 위치에 따른 하상변동)

  • Choi, Gye-Woon;Kim, Young-Kyu;Kim, Gee-Hyoung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.9
    • /
    • pp.781-787
    • /
    • 2004
  • The variation of channel bed which shows the complex hydraulic characteristics at channel junction was investigated by variation of discharge ratio and location of pier. As discharge ratio increase, the depth and width of erosion region become bigger to point of 63% of channel width in case of 1:0.5 discharge ratio. It was observed that the maximum scour depth at the point of 0.5 times of the channel width in the channel junction as 2.5 times bigger than straight channel. It means that the maximum scour depth at the channel junction is 2 times greater than by experimental formulas which are widely used in practical engineering, location of pier should be determined when it is installed in channel junction.

Study on Channel-bed Fluctuation Using Aerial Photographs(II) -Analysis of spatial-temporal distribution on the deposits- (항공사진(航空寫眞)을 이용(利用)한 하상변동(河床變動)에 관한 연구(硏究)(II) -하상퇴적지(河床堆積地)의 시(時)·공간적(空間的) 분포(分布) 해석(해석)-)

  • Chun, Kun Woo;Kim, Kyoung Nam;Cha, Du Song
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.3
    • /
    • pp.369-376
    • /
    • 1995
  • Black and White aerial photogrphs are much useful to obtain the information on the channel-bed fluctuation in the following aspects. 1. In the decision of river width, the linear regression formula between the value of aerial photograph interpretation and that of field surveying is Y=1.0+0.94X(the decision coefficient is $r^2=0.98$). Therefore, aerial photographs are proved effective for the measurement of river width. 2. Aerial photograph interpretation makes it possible to classify the plane channel and the deposits in river, and suggests the situation of the plane distribution of deposits, the size of channel and the course of channel formation. 3. The periodical channel situation can be figured out through the interpretation of aerial photographs pictured in different times. Also, the comparing and analyzing each interpretated information can be able to guess the course of the variation of channel influencing powerfully channel - bed fluctuation. 4. The microtopographic map of river can be made through the decision of river with, the interpretation of the plane shape of channel - bed and the analysis of variation of channel. On the basis of this map, the plane analysis of deposit is possible.

  • PDF

Numerical Analysis of Flow and Bed Changes due to Tributary Inflow Variation at the Confluence of the Namhan River and the Geumdang Stream (남한강과 금당천 합류부 구간에서의 지류 유입유량 변화에 따른 흐름특성 및 하상변동 수치모의)

  • Ji, Un;Jang, Eun Kyung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.11
    • /
    • pp.1027-1037
    • /
    • 2014
  • Flow and bed changes due to tributary inflow variation at the confluence of the Namhan River and the Geumdang Stream were analyzed in this study using a two-dimensional numerical model. As a result of the numerical analysis, the velocity downstream of the confluence was greater than the velocity upstream of the confluence in the main channel regardless of the magnitude of tributary inflow. However, as tributary discharge increased, the channel erosion was accelerated and the dry area was produced at the tributary. Due to the bed erosion at the tributary, sediment transport was increased and the eroded sediments were deposited in the confluence area. The deposition in the confluence area changed the flow direction at the main channel to the left side and the localized flow eroded the channel bed at the left side. Therefore, it is expected that bank failure due to continuous bed degradation is possible in this area.

Hydraulic Characteristics of Sediment Transport in the Narrow Pass of River (하천축소부에서의 유사거동 특성에 관한 실험적 연구)

  • Choi, Ho-Kyun;Kim, Won-Il;Lee, Sam-Hee;Ahn, Won-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.203-206
    • /
    • 2008
  • There are lots of the narrow pass on alluvial channel of Korea. Most of research about this narrow pass of channel were focused on incremental effect of water level at backwater segment. In the meantime this research showed that it is important to valuate the river-bed variation at backward and forward around narrow pass. The sediment deposit at not only the backward of narrow pass but also the forward affected incremental effect of water level. The sediment deposit at the forward of narrow pass headed by sediment that passed through the narrow passed or scoured right around it.

  • PDF

Numerical Analysis of Dam-break Waves in an L-shaped Channel with a Movable Bed (L자형 이동상수로에서 댐 붕괴파의 수치해석)

  • Kim, Dae-Geun;Hwang, Gun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.291-300
    • /
    • 2012
  • We conducted a three-dimensional numerical simulation by using the FLOW-3D, with RANS as the governing equation, in an effort to track the dam-break wave.immediately after a dam break.in areas surrounding where the dam break took place as well as the bed change caused by the dam-break wave. In particular, we computed the bed change in the movable bed and compared the variation in flood wave induced by the bed change with our analysis results in the fixed bed. The analysis results can be summarized as follows: First, the analysis results on the flood wave in the L-shaped channel and on the flood wave and bed change in the movable-bed channel successfully reproduce the findings of the hydraulic experiment. Second, the concentration of suspended sediment is the highest in the front of the flood wave, and the greatest bed change is observed in the direct downstream of the dam where the water flow changes tremendously. Generated in the upstream of the channel, suspended sediment results in erosion and sedimentation alternately in the downstream region. With the arrival of the flood wave, erosion initially prove predominant in the inner side of the L-shaped bend, but over time, it tends to move gradually toward the outer side of the bend. Third, the flood wave in the L-shaped channel with a movable bed propagates at a slower pace than that in the fixed bed due to the erosion and sedimentation of the bed, leading to a remarkable increase in flood water level.

Superelevation and Bed Variation Due to Attack Angle of Submerged Vanes in Curved Channel (수제 입사각에 따른 개수로 만곡부의 편수위와 하상변동)

  • Park, Sang Deog;Paik, Joongcheol;Jeon, Woo Sung;Lee, Hyun Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.297-306
    • /
    • 2019
  • Since the centrifugal force acts on the flow in the curved channel, a transverse water surface gradient occurs and the thalweg is biased toward the outer bank. The submerged vanes may be used to solve various engineering problems of the curved channels. In order to analyze the influence of an attack angle and the distance between the vane arrays on the river bed variation and the superelevation in a bend, movable bed hydraulic experiments were conducted in a $90^{\circ}$ curved rectangular channel of a small-size gravel bed. Installing the submerged vanes in the bend increases the maximum scour depth. But if vanes are installed in a uniform obtuse angle, the scour depth may be reduced. If the flow rate in the channel bend with vanes equals to the channel forming discharge, the location of the maximum scour depth moved to the downstream and the superelevation increased. However if the flow rate is smaller than that, the location of the maximum scour depth moved upstream and the superelevation decreased. The channel bed change and the superelevation due to the installation of the submerged vanes have been dependent on the interaction of the attack angle, the flow rate, and the distance between the arrays.

Prediction MOdels for Channel Bed Evolution Due to Short Term Floods (단기간의 홍수에 의한 하상변동의 예측모형)

  • Pyo, Yeong-Pyeong;Sin, Cheol-Sik;Bae, Yeol-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.597-610
    • /
    • 1997
  • One-dimensional numerical models using finite difference methods for unsteady sediment transport on alluvial river channel are developed. The Preissmann implicit scheme and the Lax-Wendroff two-step explicit scheme with the Method of Characteristics for water motion and a forward time centered space explicit scheme for sediment motion are developed to simulate the sediment transport rate and the variation of channel bed level. The program correctness of each model is successfully verified using volume conservation tests. The sensitivity studies show that higher peak stage level, steeper channel slope and longer flooding duration produce more channel bed erosion. and median grain size, $D_{50}=0.4mm$ give maximum volume loss in this study. Finally, the numerical models are found to produce reasonable results from the various sensitivity tests which reveal that the numerical models have properly responded to the changes of each model parameter.

  • PDF

A STUDY ON THE SEDIMENT AND THE RIVER BED VARIATION (하천의 유사량과 하상변동에 관한 연구)

  • 남선우
    • Water for future
    • /
    • v.11 no.1
    • /
    • pp.47-58
    • /
    • 1978
  • This study is concerned with the analysis of the formulas which give both the quantity of the total, suspended and bed loads as functions of stream and sediment characteristics. The numerical analysis of sediment discharge formulas is described and the computer program for the following 4 formulas are developed; (1) Einstein's Formula (2) Toffaleti's Formula (3) Brown's Formula (4) Kikkawa's Formula In the analysis of these formulas, the hydraulic data of the river in the downstream of the Han River are used, and these formulas have been tested by application and comparison with observed data and the results computed by the computer. In these methods and procedures, the most satisfactory and convenient formula is selected. The design and planning of the river channel regulation works are determined by computing the river bed variation by using the sediment discharge computed from the selected formula.

  • PDF

Numerical Analysis on Flow and Bed Change Characteristics by Discharge Variations at the Confluence of Nakdong and Geumho Rivers (낙동강과 금호강 합류부 구간에서 유입유량에 따른 흐름 및 하상변동 특성 변화에 관한 수치모의 연구)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.659-667
    • /
    • 2017
  • This study analyzes the changes in the flow characteristics due to the difference in inflow discharges from the main channel and tributary at the confluence of the Nakdong and Geumho Rivers. The analysis was done using a two-dimensional numerical method. The study site has complicated flow patterns because of the discharge variation from the main stream and tributary. The study section has a meandering main channel, and the hydraulic characteristics cannot be defined with simple conditions such as the confluence angle of the channels or the ratio of the channel widths. An actual flood event in 2012 was applied in the numerical simulation. The maximum velocity occurred in the meandering section after passing the confluence, where a rapid change was expected. A high velocity and large bed change in this section were observed in the simulation results. The variation of discharges from the main channel and tributary was a more dominant factor in the flow and bed changes for the normal flow conditions than the flood event. This indicates that countermeasures for channel stabilization should be considered in the meandering section downstream of the confluence section, and countermeasures for the study section should be investigated.