• Title/Summary/Keyword: variable structure controller(VSC)

Search Result 57, Processing Time 0.028 seconds

Design and control of two-link flexible manipulators (2개의 유연한 링크를 갖는 매니퓰레이터의 설계 및 제어)

  • 정주노;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.383-386
    • /
    • 1996
  • In this paper, we propose a design method and control law for plannar type two-link flexible manipulator. In designing flexible links, we use Rayleigh's principle. To control flexible manipulator, input distribution controller is used, which is primarily on the basis of nonlinear variable structure control(VSC). The simulation results are also shown.

  • PDF

An integral of output error VSC for servo control using dynamic switching function (서보제어를 위한 출력편차 적분 가변구조 제어기)

  • 박귀태;이기상;김석진;배상욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1066-1071
    • /
    • 1992
  • A new scheme of OFVSC(Output Feedvack Variable Structure Controller) is proposed for the servo control system. The main structure of proposed control scheme is composed of servo compensator and dynamic switiching function. By the use of dynamic switiching function the assumption of full state availability can be removed and the disturbances which does not satisfy the matching condition cna be rejected. And the servo compensator which is designed for each output variable the robustness for the all type of disturbances. And the performances of proposed control system are evaluated through simulation studies for a numerical example.

  • PDF

Design of Improved Discrete Variable Controller for Induction motor Position control

  • Jeon, Hee-Jong;Jeong, Eull-Gi;Kim, Beung-Jin;Kim, Sang-Woo;Lim, Byung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.404-409
    • /
    • 1998
  • In this paper, the discrete variable structure controller (DVSC) is proposed for vector controlled induction motor position control. The variable structure control (VSC) which guarantees accuracy and robustness in nonlinear control system is developed in discrete time domain for applying to real servo system. Furthermore, the load torque observer is introduced to reduce chattering problem. The computer simulation results are presented to verify the proposed control scheme.

  • PDF

Chattering Reduction of Variable Structure Controller for Position System of Induction Motor (유도전동기의 위치제어 시스템을 위한 가변구조제어기의 떨림저감)

  • Kim, Young-Jo;Kim, Hyun-Jung
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.2
    • /
    • pp.39-47
    • /
    • 1998
  • It has been known that variable structure control(VSC) has theoretically powerful control technique of providing fast response, no overshoot, and very robust control with respect to system parameter variations and disturbances. However, the technique has not become more widely extended in the industrial circles because chattering phenomenon which may excite high-frequency unmodelled plant dynamics and damage to system components exists. In this paper, a modified variable structure control(MVSC) is developed to alleviate these problems which are applied to the position control of induction motor. While the conventional VSC makes the structure of the system change with high-frequency switching on the center of the one switching surface, in the MVSC two switching surface are used to establish a sliding sector. The structure of the system will be changed with low-frequency switching. Therefore, the proposed algorithm has the properties of reducing chattering, retaining the benefits achieved in the conventional VSC, and working even under the influences of parameter variations. Experimental results show the effectiveness of the control strategy proposed here for the position control of induction motor.

  • PDF

Load effect improvement using fuzzy controller (퍼지제어기를 이용한 부하영향의 감소)

  • 김유경;최태호;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.156-161
    • /
    • 1991
  • It is difficult to realize precise control by a fuzzy control scheme alone because control signals are derived from fuzzy inferences. On the other hand, pole-placement control can offer a precise control to a known system. In this paper, a VSC(variable structure control)scheme is proposed, which is an attempt to take merits of pole-placement control and fuzzy control. On the vicinity of the reference point the pole-placement control scheme takes over the role of the fuzzy controller to improve the set point response.

  • PDF

Performance analysis of a fuzzy logic controller (퍼지 논리 제어기의 성능 해석)

  • Yi, Soo-Yeong;Hong, Yeh-Sun;Kim, Eun-Tae;Park, Min-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.265-271
    • /
    • 1997
  • A fuzzy logic controller (FLC) has been widely used for many applications in recent years. But the relationship between control performance and design parameters has not been handled explicity in the conventional theory of fuzzy logic control. In this paper, based on the similarity between an FLC and a variable structure control (VSC) theory, a performance evaluation of an FLC, which gives quantitative accounts on the relationship is presented. The validity of the analysis is verified through extensive computer simulations.

  • PDF

An Electrohydraulic Position Servo Control Systems Using the Optimal Feedforward Integral Variable Structure Controller

  • Phakamach, Phongsak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.936-941
    • /
    • 2004
  • An Optimal Feedforward Integral Variable Structure or FIVSC approach for an electrohydraulic position servo control system is presented in this paper. The FIVSC algorithm combines feedforward strategy and integral in the conventional Variable Structure Control (VSC) and calculating the control function to guarantee the existence of a sliding mode. Furthermore, the chattering in the control signal is suppressed by replacing the sign function in the control function with a smoothing function. The simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances when compared with some existing control methods, like the IVSC and MIVSC strategies. Simulation results illustrate that the purposed approach can achieve a zero steady state error for ramp input and has an optimal motion with respect to a quadratic performance index. Moreover, Its can achieve accurate servo tracking in the presence of plant parameter variation and external load disturbances.

  • PDF

Position Control of Induction Motor using Variable Structure Vector Control (가변구조 벡터제어를 이용한 유도전동기의 위치제어)

  • Lee, Y.J.;Kim, H.J.;Son, Y.D.;Kwon, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1218-1220
    • /
    • 1992
  • This paper presents the three section sliding mode control algorithm based on variable structure current controller design in a synchronous frame and indirect field oriented control method, and applies it to the position control of induction motor. This control scheme solves the problem of robustness loss during the reaching phase that occurs in a conventional VSC strategy, and ensures the stable sliding mode and robustness enhancement throughout an entire response. As the performance of a VSI fed induction motor drives depends on the characteristics of inner loop current controller, it is desired that the current controller have the fast tracking and robust nature. Therefore, we introduced the voltage mapping table based on the concept of voltage space vector for variable structure current control, and implemented fully digital control system using 16-bit microcontroller with on-chip peripherals without additional processing circuits. Simulation and experimental results confirm the validity of this control scheme for robust AC servo drive system of VSI fed induction motor.

  • PDF

The Design and Simulation of a Fuzzy Logic Sliding Mode Controller (FLSMC) and Application to an Uninterruptible Power System Control

  • Phakamach, Phongsak;Akkaraphong, Chumphol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.389-394
    • /
    • 2004
  • A Fuzzy Logic Sliding Mode Control or FLSMC for the uninterruptible power system (UPS) is presented, which is tracking a sinusoidal ac voltage with specified frequency and amplitude. The FLSMC algorithm combines feedforward strategy with the Variable Structure Control (VSC) or Sliding Mode Control (SMC) and fuzzy logic control. The control function is derived to guarantee the existence of a sliding mode. FLSMC has an advantage that the stability of FLSMC can be proved easily in terms of VSC. Furthermore, the rules of the proposed FLSMC are independent of the number of system state variables because the input of the suggested controller is fuzzy quantity sliding surface value. Hence the rules of the proposed FLSMC can be reduced. The simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances. It has the small overshoot in the transient and the smaller chattering in the steady state than the conventional VSC. Moreover, its can achieve the requirements of robustness and can supply a high-quality voltage power source in the presence of plant parameter variations, external load disturbances and nonlinear dynamic interactions.

  • PDF

Variable Structure Control Design of Windmill Power Systems

  • Long, Youjiang;Yamashita, Katsumi;Miyagi, Hayao
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.395-398
    • /
    • 2000
  • The method of Variable Structure Control (VSC) design of windmill power systems is proposed. In the design of sliding mode control, we use Riccati equations arising in linear H$\^$$\infty$/ control to decide a stable sliding surface. Then the reachability to the sliding surface is realized by designing a nonlinear controller for the windmill power system. The capability of the proposed controller to damp out the oscillations of power and the robustness with respect to the system parameter variations and model errors are evaluated in the simulation study.

  • PDF