• Title/Summary/Keyword: variable stability system

Search Result 377, Processing Time 0.024 seconds

A New Integral Variable Structure Regulation Controller for Robot Manipulators with Accurately Predetermined Output Performance (로봇 매니플레이터를 위한 정확한 사전 결정 출력 성능을 갖는 새로운 적분 가변구조 레귤레이션 제어기)

  • Lee, Jung-Hoon
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.96-107
    • /
    • 2004
  • In this paper, a new integral variable structure regulation controller(IVSRC) is designed by using a special integral sliding surface and a disturbance observer for the improved regulation control of highly nonlinear robot manipulators with prescribed output performance. The sliding surface having the integral state with a special initial condition is employed in this paper to exactly predetermine the ideal sliding trajectory from a given initial condition to origin without any reaching phase. And a continuous sliding mode input using the disturbance observer is also introduced in oder to effectively follow the predetermined sliding trajectory within the prescribed accuracy without large computation burden. The performance of the prescribed tracking accuracy to the predetermined sliding trajectory is clearly investigated in detail through the two theorems together with the closed loop stability. The design of the proposed IVSRC is separated into the performance design and robustness design in each independent link. The usefulness of the algorithm has been demonstrated through simulation studies on the regulation control of a two link manipulator under parameter uncertainties and payload variations, in view of no reaching phase, no overshoot, predetermined response with prescribed accuracy, easy change of output performance, separation of design phase, and so on.

  • PDF

A Study on Suitability of Technology Appraisal Model in Technology Financing (기술력 평가모형의 기술금융 활용 적합성 연구)

  • Lee, Jun-won;Yun, J.Y.
    • Journal of Korea Technology Innovation Society
    • /
    • v.20 no.2
    • /
    • pp.292-312
    • /
    • 2017
  • The purposes of this research are to verify: first, if the technology appraisal model reflects the company's management performance and the rates of bankruptcy and overdue; second, if the existing classification system of technology levels is suitable; and third, which is the most important appraisal factor that defines the classification system of technology levels. As a result of the analysis, financial performance (stability) and non-financial performance (technology environment) proved to be significant variables in explaining technology ratings. According to the verification of the suitability of classification system, it appeared that there is a significant difference in all appraisal items of all groups. The result of neural networks model verification indicates that the most important variable was the R&D capacity, the second variables which determine the suitability of technology financing were indicators related to the company management. The second variables which determine a company's technological excellence were a company's technological base. To summarize, the technology appraisal model not only reflects both managerial performance and risks of a company, but also anticipates the future by converging the management competence and technological competitiveness into R&D capacity. This implies that if the 'forward-looking' technology appraisal model is integrated into the existing, credit rating model, the appraisal model may have positive impact on improving anticipation and stability.

What Quality Factors Affect to the e-Learning Performance (e-러닝 성과에 영향을 미치는 품질요인에 관한 연구)

  • Kim, Sung-Gyun;Sung, Hang-Nam;Jeong, Dae-Yul
    • The Journal of Information Systems
    • /
    • v.16 no.1
    • /
    • pp.201-230
    • /
    • 2007
  • Recently, the growth of e-Learning systems and its related information technology has presented a unique challenge for both schools and industry. It would make an extremely phenomenal paradigm shift in the educational method and practice. Methods of assessing the quality of e-teaming services and contents are critical issue in both practice and research. Moreover, many researchers are interested in what qualify factors more affect to the Performance of e-Learning service. Nevertheless, service quality is a construct that is difficult to define and measure. e-Learning services are composed of many factors, and they are more complicated than the traditional education services because they we performed on the distance basis and the many platforms of IT infrastructure. The purposes of our research are to classify the e-Learning service dimension and identify their factors, to develop the measurement of the factors, and finally to test empirically their relationship between the service factors and e-Learning service performance. For the development of the service factors we considered SERVQUAL model and SERVPERF model which were developed in the service marketing area. The SERVQUAL model was more fitted to the e-Learning services than the latter. From that we derived several factors that fit to our research domain, ie, tangibles, access, reliability, credibility, security, responsiveness, assurance, empathy. We combined three factors of them(reliability, credibility, security) into a factor, system stability for the semantic simplicity, and divided responsiveness factor into system operator responsiveness and teacher responsiveness as the entity based dimension classification. In the e-Learning services research, Most researcher are mentioned the quality factors of contents, so we added to two contents quality factors, ie, contents production method and richness of contents itself. We examined the relationship between the service quality factors and e-Learning performance(student satisfaction and service reuse intention). As result three quality factors(contents production method, teacher responsiveness, empathy) significantly affected student satisfaction. To the other performance variable, ie, service reuse intention, the teacher related quality factors(such as teacher responsiveness, assurance, empathy) affected only. In conclusion, even in the on-line distance teaming, the teacher's role md earnestness is as important as ever.

  • PDF

An Experimental Study on the Durability Test for PEM Fuel Cell Turbo-blower (PEM 연료전지용 터보 블로워의 내구성에 관한 실험적 연구)

  • Lee, Yong-Bok;Lee, Hee-Sub;Chung, Jin-Taek
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.37-43
    • /
    • 2008
  • The durability test of turbo-blower for PEM fuel cell is very important process of BOP development. It is a major barrier to the commercialization of these systems for stationary and transportation power applications. Commercial viability depends on improving the durability of the air supply system to increase the reliability and to reduce the lifetime cost. In this study, turbo-blower supported by oil-free bearing is introduced as the air supply system used by 80kW proton exchange membrane fuel systems. The turbo-blower is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. The impeller of blower was adopted mixed type of centrifugal and axial. So, it has several advantages for variable operating condition. The turbo-blower test results show maximum parasitic power levels below 1.67kW with the 30,000 rpm rotating speed, the flow rate of air has maximum 163SCFM(@PR1.1). For proper application of FCV, these have to durability test. This paper describes the experiment for confirming endurance and stability of the turbo-blower for 500 hours.

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

Development of AUV's Waypoint Guidance Law and Verification by HILS (무인잠수정의 경로점 유도 법칙 설계 및 HILS 검증)

  • Hwang, Jong-Hyon;Yoo, Tae-Suk;Han, Yongsu;Kim, Hyun Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1417-1423
    • /
    • 2020
  • This paper proposes a waypoint guidance algorithm for the Autonomous Underwater Vehicle(AUV). The proposed simplified guidance algorithm is presented, which is combined LOS guidance and cross-track guidance for path following. Cross-track error is calculated using the position of the AUV and reference path. LOS guidance and cross-track guidance are appropriately changed according to cross-track error. And the stability of the system has been improved using variable cross-track control gain by cross-track error. Also, in this paper, navigation hardware in-the loop simulation(HILS) is implemented to verify navigation algorithm of AUV that performs combined navigation using inertial navigation device and doppler velocity log(DVL). Finally, we design integrated system HILS (including navigation HILS) for performance verification of guidance algorithm of the autonomous underwater vehicle. By comparing the sea test result with HILS result, the proposed guidance algorithm and HILS configuration were confirmed be correct.

Effective Capacity Planning of Capital Market IT System: Reflecting Sentiment Index (자본시장 IT시스템 효율적 용량계획 모델: 심리지수 활용을 중심으로)

  • Lee, Kukhyung;Kim, Miyea;Park, Jaeyoung;Kim, Beomsoo
    • Knowledge Management Research
    • /
    • v.23 no.1
    • /
    • pp.89-109
    • /
    • 2022
  • Due to COVID-19 and soaring participation of individual investors, large-scale transactions exceeding system capacity limits have been reported frequently in the capital market. The capital market IT systems, which the impact of system failure is very critical, have encountered unexpectedly tremendous transactions in 2020, resulting in a sharp increase in system failures. Despite the fact that many companies maintained large-scale system capacity planning policies, recent transaction influx suggests that a new approach to capacity planning is required. Therefore, this study developed capital market IT system capacity planning models using machine learning techniques and analyzed those performances. In addition, the performance of the best proposed model was improved by using sentiment index that can promptly reflect the behavior of investors. The model uses empirical data including the COVID-19 period, and has high performance and stability that can be used in practice. In practical significance, this study maximizes the cost-efficiency of a company, but also presents optimal parameters in consideration of the practical constraints involved in changing the system. Additionally, by proving that the sentiment index can be used as a major variable in system capacity planning, it shows that the sentiment index can be actively used for various other forecasting demands.

Computer vision-based remote displacement monitoring system for in-situ bridge bearings robust to large displacement induced by temperature change

  • Kim, Byunghyun;Lee, Junhwa;Sim, Sung-Han;Cho, Soojin;Park, Byung Ho
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.521-535
    • /
    • 2022
  • Efficient management of deteriorating civil infrastructure is one of the most important research topics in many developed countries. In particular, the remote displacement measurement of bridges using linear variable differential transformers, global positioning systems, laser Doppler vibrometers, and computer vision technologies has been attempted extensively. This paper proposes a remote displacement measurement system using closed-circuit televisions (CCTVs) and a computer-vision-based method for in-situ bridge bearings having relatively large displacement due to temperature change in long term. The hardware of the system is composed of a reference target for displacement measurement, a CCTV to capture target images, a gateway to transmit images via a mobile network, and a central server to store and process transmitted images. The usage of CCTV capable of night vision capture and wireless data communication enable long-term 24-hour monitoring on wide range of bridge area. The computer vision algorithm to estimate displacement from the images involves image preprocessing for enhancing the circular features of the target, circular Hough transformation for detecting circles on the target in the whole field-of-view (FOV), and homography transformation for converting the movement of the target in the images into an actual expansion displacement. The simple target design and robust circle detection algorithm help to measure displacement using target images where the targets are far apart from each other. The proposed system is installed at the Tancheon Overpass located in Seoul, and field experiments are performed to evaluate the accuracy of circle detection and displacement measurements. The circle detection accuracy is evaluated using 28,542 images captured from 71 CCTVs installed at the testbed, and only 48 images (0.168%) fail to detect the circles on the target because of subpar imaging conditions. The accuracy of displacement measurement is evaluated using images captured for 17 days from three CCTVs; the average and root-mean-square errors are 0.10 and 0.131 mm, respectively, compared with a similar displacement measurement. The long-term operation of the system, as evaluated using 8-month data, shows high accuracy and stability of the proposed system.

Development of the Local Area Design Module for Planning Automated Excavator Work at Operation Level (자동화 굴삭로봇의 운용단위 작업계획수립을 위한 로컬영역설계모듈 개발)

  • Lee, Seung-Soo;Jang, Jun-Hyun;Yoon, Cha-Woong;Seo, Jong-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.363-375
    • /
    • 2013
  • Today, a shortage of the skilled operator has been intensified gradually and the necessity of an earthwork in extreme environment operators are difficult to access is increasing for the purpose of resource development and new living space creation. For this reason, an effort to develop an unmanned excavation robot for fully automated earthwork system is continuing globally. In Korea, a research consortium called 'Intelligent Excavation System' has been formed since 2006 as a part of Construction Technology Innovation Program of Ministry of Land, Transport and Maritime Affairs of Korea. Among detailed technologies of the Task Planning System is one of the core technologies of IES, this paper explains research and development process of the Local Area Design Module, which provides informatization unit to create automated excavators' work command information at operation level such as location, range, target, and sequence for excavation work. Designing of Local Area should be considered various influential factors such as excavator's specification, working mechanism, heuristics, and structural stability to create work plan guaranteed safety and effectiveness. For this research, conceptual and detail design of the Local Area is performed for analyzing design element and variable, and quantization method of design specification corresponding with heuristics and structural safety is generated. Finally, module is developed through constructed algorithm and developed module is verified.

Analysis of submerging characteristics and stability of the model submersible fish cage operated by buoyancy control (부력 제어식 가두리 모형의 부침 특성 및 안정성 해석)

  • Lee, Gun-Ho;Cha, Bong-Jin;Jeong, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • This study aims to analyze the performance of a submersible fish cage which was designed for developing an economical cage system can be applied in korean aquaculture environment easily. To analyze the performance of the designed cage a model test was carried out. In the test, inclination changes of the upper frame and mooring tensions of model cage were measured during the submerging and surfacing motion in still water and wave condition (period: 2s, wave height: 0.1, 0.2, 0.3m). As a result, in the still water condition the model cage kept horizontal balance and inclination degree of the upper frame was about $1^{\circ}$. In the wave condition, the model cage showed bilateral symmetric up-and-down motion but the average inclination degree of the upper frame was about $0^{\circ}$. When the model cage reached at a depth of 1m, the up-and-down motion of the cage was decreased by 12% compared with that of at the surface (period 2s, height 0.3m). In the same wave condition, the maximum and average line tension under the bottom position were about 8% and 11% respectively compared with that of at surface.