• 제목/요약/키워드: variable stability system

검색결과 376건 처리시간 0.026초

STABILITY OF IMPULSIVE CONTROL SYSTEMS WITH VARIABLE TIMES

  • Zhao, Haiqing;Feng, Enmin
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.345-352
    • /
    • 2007
  • In this paper, cone-valued Lyapunov functions are employed to study the impulsive control system with variable times. The stability criteria on the non-zero solution of the impulsive control system are given by the cone-valued Lyapunov functions and the results of the controllability on the control system are also obtained.

크기가 제한된 입력을 갖는 가변구조제어 시스템을 위한 개선된 안정 영역 추정값 (An Improved Estimate of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Control)

  • 최한호
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.492-495
    • /
    • 2005
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded control. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the exponential stability of the closed-loop control system in the estimated ASR. We show that our estimate is always better than the estimate of [3].

HYERS-ULAM-RASSIAS STABILITY OF A SYSTEM OF FIRST ORDER LINEAR RECURRENCES

  • Xu, Mingyong
    • 대한수학회보
    • /
    • 제44권4호
    • /
    • pp.841-849
    • /
    • 2007
  • In this paper we discuss the Hyers-Ulam-Rassias stability of a system of first order linear recurrences with variable coefficients in Banach spaces. The concept of the Hyers-Ulam-Rassias stability originated from Th. M. Rassias# stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. As an application, the Hyers-Ulam-Rassias stability of a p-order linear recurrence with variable coefficients is proved.

Circle Criterion을 이용한 FLC의 안정도에 대한 고찰 (Consideration to the Stability of FLC using The Circle Criterion)

  • 이경웅;최한수
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.525-529
    • /
    • 2009
  • Most of FLC received input data from error e and change-of-error e' with no relation with system complexity. Basic scheme follows typical PD and PI or PID Controller and that has been developed through fixed ME In this paper, We studied the relationship between MF and system response and system response through changing Fuzzy variable of consequence MF and propose the simple FLC using this relationship. The response of FLC is changed according to the width of Fuzzy variable of consequence MF. As changing the Fuzzy variable of consequence MF shows various nonlinear characteristic, we studied the relation between response and MF using analytical method. We designed the effective FLC using three-variable MF and nine rules and took simulation for verification. In this study, we propose the method to design system with FLC in stability point which is an impotent characteristic of designing system. The circle criterion which is adapted to analysis the nonlinear system is put to use for proposed method. Since SISO FLC has a time-invariant and odd characteristic we can use the critical point not disk which is generally used to determine the stability in the circle criterion, to determine the stability. Using this, we can get the maximum critical point plot of SISO FLC with changing the consequence fuzzy variables. The predetermined critical point plot of FLC can be used to decide the region of the system to be stable. This method is effectively used to design the SISO FLC.

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF

웨이브 변수 기반 원격조작시스템의 안정성 및 성능 해석 (Stability and Performance Analysis of Wave Variable based Teleoperation System)

  • 서일홍;김형욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.325-329
    • /
    • 2003
  • In this paper. the stability and performance analysis of wave-based teleoperation system is presented. For stability and performance analysis with respect to the variation of characteristic impedance b, loop gains of communication channel and minimum value of trasmitted impedance from slave side to the master side are considered. The stability of slave side may be enhanced by increasing characteristic impedance b, whereas exssively high value of b may degrade the performance, which imply a tradeoff between stability and performance.

  • PDF

크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정 (Estimation of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Controllers)

  • 최한호;국태용
    • 제어로봇시스템학회논문지
    • /
    • 제9권8호
    • /
    • pp.616-622
    • /
    • 2003
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and show the exponential stability of the closed-loop control system in the estimated ASR. We give a simple LMI-based algorithm to get estimates of the ASR. We also give a synthesis algorithm to design a switching surface which will make the estimated ASR big. Finally, we give numerical examples in order to show that our method can give better results than the previous ones for a certain class of uncertain variable structure systems with bounded controllers.

소형풍력발전시스템을 위한 퍼지로직 기반의 가변 스텝 사이즈 MPPT 제어 (Variable Step-Size MPPT Control based on Fuzzy Logic for a Small Wind Power System)

  • 최대근;이교범
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.205-212
    • /
    • 2012
  • This paper proposes the fuzzy logic based variable step-size MPPT (Maximum Power Point Tracking) method for the stability at the steady state and the improvement of the transient response in the wind power system. If the change value of duty ratio is set on stability of the steady state, MPPT control traces to maximum power point slowly. And if the change value is set on improvement of the transient response, the system output oscillates at the maximum power point. By adjusting the step size with fuzzy logic, it can be improved the MPPT response speed and stability at steady state when MPPT control is performed to track the maximum power point. The effectiveness of the proposed method has been verified by simulations and experimental results.

Scaling Factor Design Based Variable Step Size Incremental Resistance Maximum Power Point Tracking for PV Systems

  • Ahmed, Emad M.;Shoyama, Masahito
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.164-171
    • /
    • 2012
  • Variable step size maximum power point trackers (MPPTs) are widely used in photovoltaic (PV) systems to extract the peak array power which depends on solar irradiation and array temperature. One essential factor which judges system dynamics and steady state performances is the scaling factor (N), which is used to update the controlling equation in the tracking algorithm to determine a new duty cycle. This paper proposes a novel stability study of variable step size incremental resistance maximum power point tracking (INR MPPT). The main contribution of this analysis appears when developing the overall small signal model of the PV system. Therefore, by using linear control theory, the boundary value of the scaling factor can be determined. The theoretical analysis and the design principle of the proposed stability analysis have been validated using MATLAB simulations, and experimentally using a fixed point digital signal processor (TMS320F2808).

가변구조제어에 의한 조준경 고각 안정화 (Stabilization of elevation for gunner primary sight using variable structure control)

  • 김중완;이정규;김주상;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.643-647
    • /
    • 1990
  • Gunner primary sight(GPS) stabilization system lays line of sight(LOS) to find out a target and transmits informations to the fire control system (FCS). In a moving vehicle, accuracy of LOS and FCS depends on the design of GPS and servomechanism system. The heavy vibration of vehicle on the severe off-road environment degenerates the stabilization capability of GPS. In this study, to stabilize of elevation for GPS using the variable structure control, we derived the dynamic equation of GPS system and designed the variable structure controller. Computer simulation results fulfilled the static and dynamic stability of GPS using the variable structure control.

  • PDF