The anisotropic-diffusion convection equation with exponentially variable coefficients is discussed in this paper. Numerical solutions are found using a combined Laplace transform and boundary element method. The variable coefficients equation is usually used to model problems of functionally graded media. First the variable coefficients equation is transformed to a constant coefficients equation. The constant coefficients equation is then Laplace-transformed so that the time variable vanishes. The Laplace-transformed equation is consequently written as a boundary integral equation which involves a time-free fundamental solution. The boundary integral equation is therefore employed to find numerical solutions using a standard boundary element method. Finally the results obtained are inversely transformed numerically using the Stehfest formula to get solutions in the time variable. The combined Laplace transform and boundary element method are easy to implement and accurate for solving unsteady problems of anisotropic exponentially graded media governed by the diffusion convection equation.
This paper studies the generalized fifth-order KdV equation with variable coefficients using Lie symmetry methods.Lie group classification with respect to the time dependent coefficients is performed. Then we get the similarity reductions using the symmetry and give some exact solutions.
Based on the Exp-function method and a suitable transformation, new generalized solitonary solutions including free parameters of the MDI and Sawada-Kotera equations with variable coefficients are obtained, form which solitary wave solutions and periodic solutions including some known solutions reported in open literature are derived as special cases. The free parameters in the obtained generalized solitonary solutions might imply some meaningful results in the physical models. It is shown that the Exp-function method provides a very effective and important new method for nonlinear evolution equations with variable coefficients.
본 논문에서는 karnaugh map(k-map)상의 셀을 이용하여 $2^{n}$개의 서로 다른 극수(polarity)를 갖는 GRM(Generalized Reed-Muller)상수를 생성하는 새로운 기법을 제안하였다. n개의 입력변수에 대한 일반적인 GRM 함수의 생성 방법은 단일 변수에 대한 변환 행렬을 구하고 이를 n번의 Kronecker 곱을 행한 변환 행렬을 이용하여 GRM 상수를 구하는 것이다. 이런 방법을 사용하는 경우, 변수의 숫자가 증가함에 따라 변환 행렬의 차수가 $2^{n}\times2^{n}$로 커지는 단점을 갖는다. 이에 반하여 본 논문에서는 k-map상에서 변수를 축약시킨 셀 [$f_{i}$]을 구하고 이를 단일 변수 변환 행렬과 연산하여 GBM 상수를 구하는 새로운 기법을 제안한다. 본 논문에서 제안한 새로운 방법과 타 논문과의 비교를 한 결과, 기존 방법은 가산기, 승산기, KP(Kronecker 곱 승산기)회로가 필요한데 반하여 본 논문에서는 가산기만이 필요하므로 효율적인 VLSI 설계에 유리하다
단순회귀와 다중회귀에서 회귀계수의 의미는 차이가 있고 회귀계수의 추정값은 같지 않을 뿐 아니라 그 부호가 서로 다른 경우도 발생한다. 회귀모형에서 설명변수의 상대적 기여도의 파악은 회귀분석의 수행의 중요한 부분이다. 표준화 회귀모형에서 표준화 회귀계수는 해당 설명변수를 제외한 나머지 설명변수의 값이 고정되어있는 상황에서 설명변수가 표준편차만큼 증가하였을 때 반응변수가 표준편차를 기준으로 얼마나 변화했는가로 해석할 수 있지만 표준화 회귀계수의 크기가 각 설명변수의 상대적 중요도를 나타내는 척도라고 할 수 없음은 잘 알려져 있다. 본 논문에서는 다중회귀에서 회귀계수의 추정량을 상관계수와 결정계수의 함수로 나타내고 이를 추가적인 설명력과 추가적인 결정계수의 관점에서 생각해 본다. 또한 다양한 산점도에서의 상관계수와 회귀계수 추정값의 관계를 알아보고 설명변수가 두 개인 경우에 구체적으로 적용해 본다.
This paper is concerned with investigating the global asymptotic behavior of the solution to a nonlinear wave equation with variable coefficients. noreover an estimate of the rate of decay of the solution is obtained.
Radial and tangential diffusion coefficients of boron in wood under water leaching conditions were determined from the change of concentration profiles of boron. Egner's solution was used to obtain variable diffusion coefficients of boron because it has been known to be the only method to determine variable diffusion coefficients with no cumbersome assumption. The values of diffusion coefficients were between $0.18{\times}10^{-6}m^2/sec$ and $25.6{\times}10^{-6}cm^2/sec$. They increased with the increase of sample thicknesses, and decreased with the increase of leaching times. There was a region where Egner's method was not valid. However, Egner's solution illustrates a convenient way to evaluate diffusion characteristics of boron from wood under water leaching conditions. The diffusion coefficients at wood surface may be regarded as leaching coefficients.
This paper proposes a weighted least-squares(WLS) method for designing variable one-dimensional (1-D) FIR digital filters with simultaneously variable magnitude and variable non-integer phase-delay responses. First, the coefficients of a variable FIR filter are represented as the two-dimensional (2-D) polynomials of a pair of spectral parameters: one is for tuning the magnitude response, and the other is for varying its non-integer phase-delay response. Then the optimal coefficients of the 2-D polynomials are found by minimizing the total weighted squared error of the variable frequency response. Finally, we show that the resulting variable FIR filter can be implemented in a parallel form, which is suitable for high-speed signal processing.
In this paper, numerical techniques are presented for solving initial value problems of fractional differential equations with variable coefficients. The method is derived by applying a Taylor vector approximation. Moreover, the operational matrix of fractional integration of a Taylor vector is provided in order to transform the continuous equations into a system of algebraic equations. Furthermore, numerical examples demonstrate that this method is applicable and accurate.
로지스틱 회귀모형에서 결정계수는 선형 회귀모형보다 다양하게 정의되며 그 값들도 매우 작아 로지스틱 회귀모형 평가기준으로 사용되는 통계량이 라고 할 수 없다. Liao와 McGee(2003)는 부적절한 설명변수의 추가 또는 표본크기의 변화에 민감하지 않은 두 종류의 수정 결정계수를 제안하였다. 본 연구에서는 실제자료에 적용한 로지스틱 회귀모형에서 수정 결정계수를 포함한 네 종류의 결정계수들을 변수선택의 기준으로 사용하여 기존의 변수선택 방법인 전진선택, 후진제거, 단계적 선택방법, AIC 통계량 등을 사용한 방법들과 비교하여 그 적절함과 효율성을 토론한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.