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LIE SYMMETRY ANALYSIS AND INVARIANT SOLUTIONS

OF THE GENERALIZED FIFTH-ORDER KDV EQUATION

WITH VARIABLE COEFFICIENTS†
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Abstract. This paper studies the generalized fifth-order KdV equation
with variable coefficients using Lie symmetry methods.Lie group classifi-
cation with respect to the time dependent coefficients is performed. Then

we get the similarity reductions using the symmetry and give some exact
solutions.
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1. Introduction

It is well known that the celebrated KdV types of equations have been around
for a very long time.Lot of studies have been conducted with these types of
equations [1-8].In this paper,the generalized fifth-order KdV equation

ut + unux + α(t)u+ β(t)uxxxxx = 0, (1.1)

of time dependent variable coefficients of the linear damping and dispersion is
studied. Here in (1.1) the first term represents the evolution term while the
second term represents the nonlinear term. The third term represents the linear
damping while the fourth term is the dispersion term. The time dependent coef-
ficients of damping and dispersion are, respectively, α(t) and β(t) are arbitrary
smooth functions of the variable t.

These fifth-order KdV types of equations have been derived to model many
physical phenomena, such as gravity-capillary waves on a shallow layer and
magneto-sound propagation in plasmas, and so on.In [9] similarity solutions for
some classes of the Eq.(1.1) were considered.The paper [10] is mainly concerned
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with the local well-posedness of the initial-value problems for the Kawahara and
the modified Kawahara equations in Sobolev spaces.

Lie’s method of infinitesimal transformation groups which essentially reduces
the number of independent variables in partial differential equation (PDE) and
reduces the order of ODE has been widely used in equations of mathematical
physics. Lie’s method [11-19] is an effective and simplest method among group
theoretic techniques and a large number of equations are solved with the aid of
this method.

Our aim in the present work is to perform the variable coefficients version of
the generalized fifth-order KdV equation with the help of Lie’s method. Then
we get symmetry reductions and group-invariant solutions.

2. Lie group classification

2.1. Lie symmetry analysis of (1.1)
If (1.1) is invariant under a one parameter Lie group of point transformations

t∗ = t+ϵτ(x, t, u)+O(ϵ2), x∗ = x+ϵξ(x, t, u)+O(ϵ2), u∗ = u+ϵη(x, t, u)+O(ϵ2),
(2.1)

with infinitesimal generator

V = τ(x, t, u)
∂

∂t
+ ξ(x, t, u)

∂

∂x
+ η(x, t, u)

∂

∂u
, (2.2)

then the invariant condition reads as

ηt + unηx +nηuxu
n−1 +α

′
(t)τu+ β

′
(t)τuxxxxx +α(t)η+ β(t)ηxxxxx = 0, (2.3)

where

ηt = Dt(η)− uxDt(ξ)− utDt(τ),

ηx = Dx(η)− uxDx(ξ)− utDx(τ),

ηxx = Dx(η
x)− uxtDx(τ)− uxxDx(ξ),

ηxxx = Dx(η
xx)− uxxtDx(τ)− uxxxDx(ξ),

ηxxxx = Dx(η
xxx)− uxxxtDx(τ)− uxxxxDx(ξ),

ηxxxxx = Dx(η
xxxx)− uxxxxtDx(τ)− uxxxxxDx(ξ).

Here,Di denotes the total derivative operator and is defined by

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · · i = 1, 2,

and(x1, x2) = (t, x).
The infinitesimals are determined from invariance condition (2.3), by set-

ting the coefficients of different differentials equal to zero.We obtain an over
determined system of linear partial differential equations (PDEs).Therefore,the
determining equation for symmetries after some tedious calculations yield

τ = τ(t), ξu = 0, ξt = 0, ξxx = 0, ηuu = 0, ηx = 0, (2.4)

β(t)τt + β′(t)τ − 5β(t)ξx = 0, (2.5)
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τtu− ξxu+ nη = 0, (2.6)

ηt + α(t)η + α(t)uτt − α(t)uηu + uα′(t)τ = 0. (2.7)

Solving the determining Eqs.(2.4)-(2.7) we get three sets of infinitesimals
Set.1

η =
(c1 + c3ne

ntα)

n
u, τ = −c3e

ntα

α
+ c4, ξ = c1x+ c2,

β′

β
=

5c1α+ c3nαe
ntα

c4α− c3entα
, (2.8)

where α is a constant.
For this case, the symmetry Lie algebra is four-dimensional and is spanned

by generators of symmetry

V1 =
∂

∂x
, V2 = x

∂

∂x
+

1

n
u
∂

∂u
, V3 = − 1

α
enαt

∂

∂t
+ enαtu

∂

∂u
, V4 =

∂

∂t
. (2.9)

Set.2
ξ = c1x+ c2, τ = (c1 − nc3)t+ c4, η = c3u,

β′

β
=

4c1 + nc3
(c1 − nc3)t+ c4

, α =
c5

(c1 − nc3)t+ c4
. (2.10)

The Lie algebra extends in this case by symmetry generator

V1 =
∂

∂x
, V2 = x

∂

∂x
+ t

∂

∂t
, V3 = −nt

∂

∂t
+ u

∂

∂u
, V4 =

∂

∂t
. (2.11)

Set.3
ξ = (c1 + nc2)x+ c3, τ = c1t+ c4, η = c2u,

β′

β
=

4c1 + 5nc2
c1t+ c4

, α = 0. (2.12)

For this case, the symmetry Lie algebra is extended by the generators of
symmetry

V1 =
∂

∂x
, V2 = x

∂

∂x
+ t

∂

∂t
, V3 = nx

∂

∂x
+ u

∂

∂u
, V4 =

∂

∂t
. (2.13)

It easy to check that the symmetry generators found in (2.9), (2.11) and (2.13)
form a closed Lie algebra whose commutation relations are given in Tables 1, 2
and 3, respectively. The entry in row i and column j representing [Vi, Vj ].Here
[Vi, Vj ] is the commutator for the Lie algebra[11] given by

[Vi, Vj ] = ViVj − VjVi.

Table 1. Commutator table of the Lie algebra of (2.9).
V1 V2 V3 V4

V1 0 V1 0 0
V2 −V1 0 0 0
V3 0 0 0 −nαV3

V4 0 0 nαV3 0
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Table 2. Commutator table of the Lie algebra of (2.11).
V1 V2 V3 V4

V1 0 V1 0 0
V2 −V1 0 0 −V4

V3 0 0 0 nV4

V4 0 V4 −nV4 0

Table 3. Commutator table of the Lie algebra of (2.13).
V1 V2 V3 V4

V1 0 V1 nV1 0
V2 −V1 0 0 −V4

V3 −nV1 0 0 0
V4 0 V4 0 0

3. Symmetry reductions and exact group-invariant solutions

In order to obtain similarity reductions and solutions of Eq(1.1), one first
solves the characteristic equation, to obtain invariant transformations and then
substitutes these results into Eq(1.1) to determine the corresponding reduced
equations. Finally, similarity solutions can be obtained. We write the charac-
teristic equations in the form

dx

ξ
=

dt

τ
=

du

η
.

Here we discuss the following cases:

3.1. Symmetry reductions to case Set.1

3.1.1. c1 = c2 = c4 = 0(V3).
In this case,one can get the following form similarity solution

u(x, t) = e−αtf(h), (3.1)

where h = x is the group-invariant and β = b0e
−nαt. Substitution of (3.1) into

the (1.1),we reduce it to the following ODE

b0f
(5) + fnf ′ = 0. (3.2)

Integration of (3.2), yields

b0f
(4) +

1

n+ 1
fn+1 − C1 = 0, (3.3)

where b0, C1 are constants of integration.

3.1.2. c1 = c4 = 0.
we derive the following expression of u

u(x, t) = e−αtf(h), (3.4)
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where h = x − c2
c3n

e−nαt is the group-invariant and β = b1e
−nαt. Substitution

of (3.4) into the (1.1), one can get

c3b1f
(5) + c3f

nf ′ + c2αf
′ = 0. (3.5)

It is also possible to integrate once the ODE (3.5) to get

c3b1f
(4) +

c3
n+ 1

fn+1 + c2αf − C2 = 0, (3.6)

where b1, C2 are constants of integration.

3.1.3. c4 = 0.
In this case, we obtain the similarity solution is given by

u = exp
[
− c1

c3n2α
e−ntα − αt

]
f(h),

where h = (c1x+ c2)exp
[

c1
c3n

e−ntα
]
is the group-invariant and

β = b2exp
[
− 5c1

c3n
e−ntα − nαt

]
.

We have
c3b2nc

4
1f

(5) + nc3f
nf ′ − αnhf ′ + αf = 0, (3.7)

where b2 is a constant of integration.Here f ′ = df
dh .

3.2. Symmetry reductions to case Set.2

3.2.1. c1 = c2 = 0.
In this case,one can get the following form similarity solution

u(x, t) = (−nc3t+ c4)
− 1

n f(h), (3.8)

where h = x is the group-invariant and β = b3(−nc3t+ c4)
−1, α = c5

(c1−nc3)t+c4
.

Substitution of (3.8) into the (1.1),we reduce it to the following ODE

b3f
(5) + fnf ′ + (c3 + c5)f = 0. (3.9)

Integration of (3.9), with c3 = −c5, yields

b3f
(4) +

1

n+ 1
fn+1 − C3 = 0, (3.10)

where b3, C3 are constants of integration. Which is similar to (3.3).

3.2.2. c1 = 0.
we derive the following expression

u(x, t) = (−nc3t+ c4)
− 1

n f(h), h(x, t) = x+
c2
nc3

lg (c4 − nc3t), (3.11)

and

β =
b4

−nc3t+ c4
, α =

c5
(c1 − nc3)t+ c4

. (3.12)
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Inserting (3.11), (3.12) in (1.1), we have

b4f
(5) + fnf ′ − c2f

′ + (c3 + c5)f = 0. (3.13)

When c3 = −c5, it is also possible to integrate once the ODE (3.13) to get

b4f
(4) +

1

n+ 1
fn+1 − c2f − C4 = 0, (3.14)

where b4, C4 are constants of integration.

3.2.3. The general case.
In this case, we obtain the similarity solution is given by

u = [(c1 − nc3)t+ c4]
c3

c1−nc3 f(h), (3.15)

where

h = (nc1x+ c2)[(c1 − nc3)t+ c4]
−c1

c1−nc3 , (3.16)

is the group-invariant and

β = b5[(c1 − nc3)t+ c4]
4c1+nc3
c1−nc3 , α =

c5
(c1 − nc3)t+ c4

. (3.17)

We have
b5c

5
1f

(5) + c1f
nf ′ − c1hf

′ + (c3 + c5)f = 0. (3.18)

If −c1 = c3 + c5, then we obtain

b5c
4
1f

(5) + fnf ′ − hf ′ − f = 0. (3.19)

Integrate once the ODE (3.19), we get

b5c
4
1f

(4) +
1

n+ 1
fn+1 − hf = 0. (3.20)

where b5 is a constant of integration.Here f ′ = df
dh .

3.3. Symmetry reductions to case Set.3

3.3.1. c1 = 0.
In this case,one can get the following form similarity solution

u(x, t) = e
c2
c4

tf(h), (3.21)

where
h = (nc2x+ c3)e

−nc2
c4

t

is the group-invariant and β = b6e
5nc2
c4

t. Substitution of (3.21) into the (1.1),we
reduce it to the following ODE

b6c4n
4c42f

(5) + c4nf
nf ′ − nhf ′ + f = 0, (3.22)

where b6 is a constant of integration.

3.3.2. c1 = c2 = 0.
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In this case, we have u = f(h), h = x− c3
c2
t, β = b7.Thus (1.1) can becomes

b7c2f
(5) + c2f

nf ′ − c3f
′ = 0, (3.23)

where b7 is a constant.It is similar to (3.5).

3.3.3. The general case.
In this case, we obtain the similarity solution is given by

u = (c1t+ c4)
c2
c1 f(h), (3.24)

where

h = [(c1 + nc2)x+ c3](c1t+ c4)
− c1+nc2

c1 , (3.25)

is the group-invariant and

β = b8[c1t+ c4]
5nc2+4c1

c1 . (3.26)

We have

b8(c1 + nc2)
5f (5) + (c1 + nc2)f

nf ′ − (c1 + nc2)hf
′ + c2f = 0. (3.27)

If −c2 = c1 + nc2, then we obtain

b8(c1 + nc2)
5f (5) + (c1 + nc2)f

nf ′ + c2hf
′ + c2f = 0. (3.28)

Integrate once the ODE (3.28), one can get

b8(c1 + nc2)
5f (4) +

c1 + nc2
n+ 1

fn+1 + c2hf = 0. (3.29)

where b8 is a constant of integration.Here f ′ = df
dh .

It is not difficult to find that the reduced ODEs may be classified into four
classes [20]

f (5) + Pfnf ′ +Qhf ′ +Rf = 0, (3.30)

f (5) + Pfnf ′ +Qf ′ = 0, (3.31)

f (5) + Pfnf ′ +Qf = 0, (3.32)

f (5) + Pfnf ′ = 0, (3.33)

where P,Q and R are constants.

4. The exact power series solutions

In this section, we will consider the exact analytic solutions to the reduced
equations by using the power series method.

Now, we seek a solution of Eq.(3.31) in a power series of the form

f(h) =
∞∑

n=0

anh
n. (4.1)

Integrate once the ODE (3.31), we have

f (4) +
P

n+ 1
f (n+1) +Qf − C = 0, (4.2)
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Substituting (4.1) into (4.2), we can get

24a4 +
∞∑

n=1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)an+4h
n +

P

n+ 1
an+1
0

+
P

n+ 1

∞∑
n=1

 n∑
k1=0

k1∑
k2=0

. . .

kn−2∑
kn−1=0

kn−1∑
kn=0

aknakn−1−kn . . . an−k1


︸ ︷︷ ︸

n−1

hn

+Qa0 +Q
∞∑

n=1

anh
n − C = 0,

(4.3)

From (4.3), comparing coefficients, for n = 0, we obtain

a4 =
1

24
(C −Qa0 −

P

n+ 1
an+1
0 ). (4.4)

Generally, for n ≥ 1, we have

an+4 =
−1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

{
Qan

+
P

n+ 1

( n∑
k1=0

k1∑
k2=0

. . .

kn−2∑
kn−1=0

kn−1∑
kn=0

aknakn−1−kn . . . an−k1

)
︸ ︷︷ ︸

n−1

}
.

(4.5)

From (4.4) and (4.5), we can get all the coefficients an(n ≥ 4) of the power
series (4.1). For arbitrary chosen constant numbers a0, a1, a2, and a3, the other
terms can be determined successively from (4.4) and (4.5) in a unique way. In
addition,it is easy to prove that the convergence of the power series (4.1) with
the coefficients give by (4.4) and (4.5)[21].The details are omitted here. For this
reason,this power series solution is an exact analytic solution.

For example, the power series solution of Eq.(3.6) can be written as following

f(ξ) = a0 + a1h+ a2h
2 + a3h

3 + a4h
4 +

∞∑
n=1

an+4h
n+4

= a0 + a1h+ a2h
2 + a3h

3 +
1

24c3b1
(C2 − c2αa0 −

c3
n+ 1

an+1
0 )h4

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

[
c2α

c3b1
an

+
1

b1(n+ 1)

 n∑
k1=0

k1∑
k2=0

. . .

kn−2∑
kn−1=0

kn−1∑
kn=0

aknakn−1−kn . . . an−k1


︸ ︷︷ ︸

n−1

]
hn+4.

(4.6)
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Thus, the exact power series solution of Eq.(1.3) is

u(x, t) =

[
a0 + a1

(
x− c2

c3n
e−nαt

)
+ a2

(
x− c2

c3n
e−nαt

)2

+ a3

(
x− c2

c3n
e−nαt

)3

+
1

24c4b1
(C2 − c2αa0 −

c3
n+ 1

an+1
0 )

(
x− c2

c3n
e−nαt

)4

+

∞∑
n=1

cn+4

(
x− c2

c3n
e−nαt

)n+4
]
e−tα

=

{
a0 + a1

(
x− c2

c3n
e−nαt

)
+ a2

(
x− c2

c3n
e−nαt

)2

+ a3

(
x− c2

c3n
e−nαt

)3

+
1

24c4b1
(C2 − c2αa0 −

c3
n+ 1

an+1
0 )

(
x− c2

c3n
e−nαt

)4

−
∞∑

n=1

1

(n+ 1)(n+ 2)(n+ 3)(n+ 4)

[
c2α

c3b1
an

+
1

b1(n+ 1)

( n∑
k1=0

k1∑
k2=0

. . .

kn−2∑
kn−1=0

kn−1∑
kn=0

aknakn−1−kn
. . . an−k1

)
︸ ︷︷ ︸

n−1

]

(
x− c2

c3n
e−nαt

)n+4
}
e−tα,

(4.7)

where ai(i = 0, 1, 2, 3) are arbitrary constants, the other coefficients an(n ≥ 4)
can be determined successively from (4.4) and (4.5).

Of course, in physical applications, it will be convenient to write the solution
of Eq.(1.3) in the approximate form

u(x, t) =

[
a0+a1

(
x− c2

c3n
e−nαt

)
+a2

(
x− c2

c3n
e−nαt

)2

+a3

(
x− c2

c3n
e−nαt

)3

+
1

24c4b1
(C2 − c2αa0 −

c3
n+ 1

an+1
0 )

(
x− c2

c3n
e−nαt

)4

+ . . .

]
e−tα, (4.8)

in terms of the above computation.

Remark 1. The exact solution of the rest of Eqs and the solution in the
approximate form can be written in terms of the above computation. but for
brevity we have omitted them here.

5. Conclusion

In this paper we have studied the generalized fifth-order KdV equation with
variable coefficients using the Lie symmetry group methods. A Lie group clas-
sification of the symmetries with respect to the special forms of the time de-
pendent variable coefficients was presented.At the same time,we generalize the
corresponding results in[4].This study contains a number of new and important
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insights. Then some exact exact analytic solutions are obtained by using the
power series method.It is important that the reduced ODEs may be classified
into four classes.Furthermore, how to get the other forms of exact solutions to
these reduced ODEs? We hope to investigate this in the future.
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