• Title/Summary/Keyword: vapor cloud

Search Result 118, Processing Time 0.019 seconds

A Study on Safety Assessment of Hydrogen Station (수소충전소의 안전성 평가 연구)

  • PYO, DON-YOUNG;KIM, YANG-HWA;LIM, OCK-TAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.499-504
    • /
    • 2019
  • Due to the rapid spread and low minimum ignition energy of hydrogen, rupture is highly likely to cause fire, explosion and major accidents. The self-ignition of high-pressure hydrogen is highly likely to ignite immediately when it leaks from an open space, resulting in jet fire. Results of the diffusion and leakage simulation show that jet effect occurs from the leakage source to a certain distance. And at the end of location, the vapor cloud explosion can be occurred due to the formation of hydrogen vapor clouds by built-up. In the result, it is important that depending on the time of ignition, a jet fire or a vapor cloud explosion may occur. Therefore, it is necessary to take into account jet effect by location of leakage source and establish a damage minimizing plan for the possible jet fire or vapor cloud explosion. And it is required to any kind of measurements such as an interlock system to prevent hydrogen leakage or minimize the amount of leakage when detecting leakage of gas.

Hybrid Operational Concept with Chemical Detection UAV and Stand-off Chemical Detector for Toxic Chemical Cloud Detection (화학오염운 탐지를 위한 접촉식 화학탐지기를 탑재한 무인기와 원거리 화학탐지기의 복합 운용개념 고찰)

  • Lee, Myeongjae;Chong, Eugene;Jeong, Young-Su;Lee, Jae-Hwan;Nam, Hyunwoo;Park, Myung-Kyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.302-309
    • /
    • 2020
  • Early-detection and monitoring of toxic chemical gas cloud with chemical detector is essential for reducing the number of casualties. Conventional method for chemical detection and reconnaissance has the limitation in approaching to chemically contaminated site and prompt understanding for the situation. Stand-off detector can detect and identify the chemical gas at a long distance but it cannot know exact distance and position. Chemical detection UAV is an emerging platform for its high mobility and operation safety. In this study, we have conducted chemical gas cloud detection with the stand-off chemical detector and the chemical detection UAV. DMMP vapor was generated in the area where the cloud can be detected through the field of view(FOV) of stand-off chemical detector. Monitoring the vapor cloud with standoff detector, the chemical detection UAV moved back and forth at the area DMMP vapor being generated to detect the chemical contamination. The hybrid detection system with standoff cloud detection and point detection by chemical sensors with UAV seems to be very efficient as a new concept of chemical detection.

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Butane Vapor in the Debutanizing Process of Naphtha Cracking Plant (나프타분해플랜트의 부탄추출공정에서 부탄증기의 연속누출에 의한 증기운 폭발사고의 영향평가)

  • 손민일;이헌창;장서일;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.33-43
    • /
    • 2000
  • The consequence analysis for the unconfined vapor cloud explosion(UVCE) accident by the continuous release of butane vapor was performed and effects of process parameters on consequences were analyzed in standard conditions. For the case of continuous release(87.8 kg/s) of butane vapor at 8 m elevated height in the debutanizing process of tile naphtha cracking plant operating at 877 kPa & 346.75 K, we found that combustion ranges of dispersed vapor estimated by HMP model were 11.2~120.2 m and overpressures estimated by TNT equivalency model at 200 m were about 37.35~55.1 kPa. Also, overpressures estimated by Model UVCE I based on advective travel time to $X_{LFL}$ were smaller than those estimated by Model UVCE IIbased on real travel time between $X_{UFL}$ and $X_{LFL}$. At the same time, damage intensities at 200 m and effect ranges by overpressure could be predicted. Furthermore, simulation results showed that effects of operating pressures on consequences were larger than those of operating temperatures and results of accidents were increased with increasing operating pressures. At this time, sensitivities of overpressures for UVCE accident by the continuous release were about 5 kPa/atm.

  • PDF

Analysis of the Damaged Range Caused by LPG Leakage and Vapor Clouds Considering the Cold Air Flow (찬공기 흐름을 고려한 LPG 누출 및 증기운에 의한 피해 영향 범위 분석)

  • Gu, Yun-Jeong;Song, Bonggeun;Lee, Wonhee;Song, Byunghun;Shin, Junho
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.27-35
    • /
    • 2022
  • When LPG leaks from the storage tank, the gas try to sink to the ground because LPG is heavier than air. The gas easily creates vapor clouds causing aggressive accidents in no airflow. Therefore, It is important to prevent in advance by analyzing the damaged range caused from LPG leakage and vapor clouds. So, this study analyzed the range of damaged by LPG leakage and vapor clouds with consideration of the cold air flow which is generated by the topographical characteristics and the land use status at night time in the Jeju Hagari. As a result of the cold air flow using KLAM_21, about 2 m/s of cold air was introduced in from the southeast due to the influence of the terrain. The range of damaged by LPG leakage and vapor cloud was analyzed using ALOHA. When the leak hole size is 10 cm at the wind speed of 2 m/s, the range corresponding to LEL 60 % (12,600 ppm) was 61 m which range is expected to influence in nearby residential areas. These results of this study can be used as basic data to prepare preventive measures of accidents caused by vapor cloud. Forward, it is necessary to apply CFD modeling such as FLACS to check the vapor cloud formation due to LPG leakage in a relatively narrow area and to check the cause analysis.

Improvement of Charge Strength Guideline for Multi-Energy Method by Comparing Vapor Cloud Explosion Cases (증기운 폭발 사례 비교를 통한 멀티에너지법의 폭발강도계수 지침 개선)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.355-362
    • /
    • 2021
  • Various blast pressure calculation methods have been developed for predicting the explosion pressure of vapor cloud explosions. Empirical methods include the TNT equivalent method, and multi-energy method. The multi-energy method uses a charge strength that considers environmental factors. Although the Kinsella guideline was provided to determine the charge strength, there are limitations such as guidelines related to ignition sources. In this study, we proposed an improved charge strength guideline, by subdividing the ignition source intensity and expanding the type classification through literature analysis. To verify the improved charge strength guideline, and to compare it with the result obtained using the Kinsella guideline, four vapor cloud explosion cases which could be used to estimate the actual blast pressure were investigated. As a result, it was confirmed that the Kinsella guidelines showed an inaccurate, that is, wider pressure than the actual estimated blast pressure. However, the improved charge strength guideline enabled the selection of the intensity of the ignition source, and more subdivided types through the expansion of classification, hence it was possible to calculate the blast pressure relatively close to that of the actual case.

Development of Design Blast Load Model according to Probabilistic Explosion Risk in Industrial Facilities (플랜트 시설물의 확률론적 폭발 위험도에 따른 설계폭발하중 모델 개발)

  • Seung-Hoon Lee;Bo-Young Choi;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • This paper employs stochastic processing techniques to analyze explosion risks in plant facilities based on explosion return periods. Release probability is calculated using data from the Health and Safety Executive (HSE), along with annual leakage frequency per plant provided by DNV. Ignition probability, derived from various researchers' findings, is then considered to calculate the explosion return period based on the release quantity. The explosion risk is assessed by examining the volume, radius, and blast load of the vapor cloud, taking into account the calculated explosion return period. The reference distance for the design blast load model is determined by comparing and analyzing the vapor cloud radius according to the return period, historical vapor cloud explosion cases, and blast-resistant design guidelines. Utilizing the multi-energy method, the blast load range corresponding to the explosion return period is presented. The proposed return period serves as a standard for the design blast load model, established through a comparative analysis of vapor cloud explosion cases and blast-resistant design guidelines. The outcomes of this study contribute to the development of a performance-based blast-resistant design framework for plant facilities.

A Study on the Improvement of Heavy Rainfall Model Based on the Ground Surface Data and Cloud Physics (지표자료와 구름물리를 토대로 한 호우모형의 개선에 관한 연구)

  • 김운중;이재형
    • Water for future
    • /
    • v.28 no.6
    • /
    • pp.229-236
    • /
    • 1995
  • The physically based heavy rainfall model developed by Ceon(1994) for storm events is modified in this study. The main parts of this paper are composed of modeling saturation vapor pressure, cloud thickness, cloud top pressure. In a different way from the previous model, cloud top temperature and albedo measured by satellite are used as input data to the model. In this paper, the defect of saturation vapor pressure equation in the previous model was improved. Furthermore, the parameters for temperature and pressure on cloud top are eliminated as well as the time of calculation in the model is decreased. Also, the results show that there are very small gab between the hourly calculated.

  • PDF

A Study on the Estimation of Human Damage Caused by Vapor Cloud Explosion(VCE) in LPG Filling Station (LPG자동차충전소에서 증기운폭발로 인한 인명피해예측에 관한 연구)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.15-21
    • /
    • 2010
  • The demand of gas as an eco-friendly energy source has being increased. With increasing the LPG demand, the number of LPG filling station. In this work, the influence on over-pressure caused by Vapor Cloud Explosion in gas station was calculated by using the Hopkinson's scaling law and injury effect by the accident to a human body was estimated by applying the probit model. As a result of the injury estimation conducted by using the probit model for leakage 10% of 20ton storage tank. The distances from LPG station for death and tympanum rupture are 36.5 and 290 meters, respectively.

A Numerical Simulation on the Development of Cloud (적운 발달에 관한 수치 시뮬레이션)

  • Lee, Hwa-Un;Kim, Yu-Geun;Jeon, Byeong-Il
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.15-23
    • /
    • 1992
  • Development of cumulus is studied by numerically integrating the equation of motion equations of conservation for water vapor mixing ratio, and the thermodynamic energy equuation. We use the terrain-following coordinate system called z'-coordinate system, in which we can easily treat any calculation domain with terrain configuration such as mountains. The model domain of calculation is restricted vertically to 4.Skin and horizontally to 100 km, has a bell-type mountain in the centeral part. Four cases are considered, one in a neutral environment, second in a slightly stable environment, third in a environment decreasing water content with low value of initial water vapor mixing ratio, the fourth in a case with higher vapor gradient. The more the atmosphere is unstable, the more cumulus develops easily and the more water vapors is abundant, the more cumulus develops easily too. More detailed cloud microphysics parameterizations and wet deposition must be conridered to use in air pollutants prediction model.

  • PDF

Assessment of the Applicability of Vapor Cloud Explosion Prediction Models (증기운 폭발 예측 모델의 적용성 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.44-53
    • /
    • 2022
  • This study evaluates the applicability of the TNT Equivalency Method, Multi-Energy Method, and Baker-Strehlow-Tang (BST) Method, which are blast prediction models used to determine the overpressure of blast wave generated from vapor cloud explosion. It is assumed that the propane leaked from a propane storage container with a capacity of 2000 kg installed in an area where studio houses and shopping centers are concentrated causes a vapor cloud explosion. The equivalent mass of TNT calculated by applying the TNT Equivalency Method is found to be 4061 kg. Change of overpressure with the distance obtained by the TNT Equivalency Method, Multi-Energy Method, and BST Method is rapid and the magnitude of overpressure obtained by the TNT Equivalency Method and BST method is generally similar within 100 m from explosion center. As a result of comparing the overpressure observed in the actual vapor cloud explosion case with the overpressure obtained by applying the TNT Equivalent Method, Multi-Energy Method, and BST Method, the BST Method is found to be the best fit. As a result of comparing the overpressure with the distance obtained by each explosion prediction model with the damage criteria for structure, it is estimated that the structure located within 90 m from explosion center would suffer a damage more than partial destruction, and glass panes of the structure separated by 600 m would be fractured.