DOI QR코드

DOI QR Code

Analysis of the Damaged Range Caused by LPG Leakage and Vapor Clouds Considering the Cold Air Flow

찬공기 흐름을 고려한 LPG 누출 및 증기운에 의한 피해 영향 범위 분석

  • Gu, Yun-Jeong (Corporate Cooperation Center, Korea Electronics Technology Institute) ;
  • Song, Bonggeun (Institute of Industrial Technology, Changwon National University) ;
  • Lee, Wonhee (Smart Manufacturing Research Center, Korea Electronics Technology Institute) ;
  • Song, Byunghun (Smart Manufacturing Research Center, Korea Electronics Technology Institute) ;
  • Shin, Junho (Smart Manufacturing Research Center, Korea Electronics Technology Institute)
  • 구윤정 (한국전자기술연구원 기업협력센터) ;
  • 송봉근 (창원대학교 산업기술연구원) ;
  • 이원희 (한국전자기술연구원 스마트제조연구센터) ;
  • 송병훈 (한국전자기술연구원 스마트제조연구센터) ;
  • 신준호 (한국전자기술연구원 스마트제조연구센터)
  • Received : 2022.05.18
  • Accepted : 2022.08.16
  • Published : 2022.08.31

Abstract

When LPG leaks from the storage tank, the gas try to sink to the ground because LPG is heavier than air. The gas easily creates vapor clouds causing aggressive accidents in no airflow. Therefore, It is important to prevent in advance by analyzing the damaged range caused from LPG leakage and vapor clouds. So, this study analyzed the range of damaged by LPG leakage and vapor clouds with consideration of the cold air flow which is generated by the topographical characteristics and the land use status at night time in the Jeju Hagari. As a result of the cold air flow using KLAM_21, about 2 m/s of cold air was introduced in from the southeast due to the influence of the terrain. The range of damaged by LPG leakage and vapor cloud was analyzed using ALOHA. When the leak hole size is 10 cm at the wind speed of 2 m/s, the range corresponding to LEL 60 % (12,600 ppm) was 61 m which range is expected to influence in nearby residential areas. These results of this study can be used as basic data to prepare preventive measures of accidents caused by vapor cloud. Forward, it is necessary to apply CFD modeling such as FLACS to check the vapor cloud formation due to LPG leakage in a relatively narrow area and to check the cause analysis.

LPG는 공기보다 무거워 지표면으로 가라앉는 특징이 있으며, 주변 공기가 체류하는 경우 증기운을 형성하기 쉬워 가스 누출로 인한 피해가 가중될 우려가 있다. 그러므로 증기운 형성에 따른 주변 지역의 영향 범위분석을 통해 피해를 예방할 필요가 있다. 본 연구에서는 LPG 공급 관리소가 설치된 제주 하가리 일대를 대상으로 토지이용 현황과 지형적 특성으로 생성되는 야간 시간대의 찬공기 흐름과 그에 따른 LPG 누출 특성을 고려하여 주변 지역으로의 피해 영향 범위를 분석하였다. KLAM_21을 활용하여 찬공기 흐름을 분석한 결과, 지형 영향으로 인해 남동쪽에서 약 2 m/s의 찬공기가 유입되었다. LPG 누출 특성은 ALOHA를 이용하였으며 찬공기 흐름을 고려하여 분석하였다. 풍속 2 m/s 조건에서 누출공 크기가 10 cm일 때 LEL 60 %(12,600 ppm)에 해당하는 범위는 61 m로 나타났으며 LPG 누출 시 증기운에 의한 화재 등의 사고가 발생하는 경우 누출원으로부터 50 m 부근에 위치한 인근 주거지에 피해가 미칠 것으로 예상되므로 사고 예방을 위한 대안책이 요구된다. 해당 연구결과는 LPG 누출로 인한 사고 발생 시 예방책을 마련하는데 기초 자료로 활용될 수 있으며 FLACS와 같은 CFD 모델링을 통해 비교적 좁은 영역에서의 LPG 누출 형상 및 증기운으로 인한 피해 영향 범위를 확인할 필요가 있다.

Keywords

Acknowledgement

본 논문은 2022년도 정부(산업통상자원부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행되었습니다. (No.20017259, 생활 속 안전시설을 위한 IT 융합기술 기반 스마트 안전 센서 및 운영시스템 기술개발)

References

  1. Hong, S. J., Choi, B.H., Lee, D.G., Lee, J.T., Park, S.E., Gu, G.G., "A Feasibility Study on Supply of Liquefied Natural Gas at Not-supplied regions using DEA", Proceedings of Korean Institute Of Industrial Engineers(KIIE) Spring Conference, 1292-1295, (2009)
  2. Yoon, H. J., Shin, J. Y., Hong, J. W., "The CH4 and C4 H10 Sensitivity Measurement and Voltage Varia- tion Using Catalytic Combustion Type Gas Sen- sor", Journal of Korean Institute of Fire Science and Engineering, 15(3), 44-48, (2001)
  3. Kidnay, A. J., Perish, W. R., "Fundamentals of Natural Gas Processing", Taylor & Francis, (2005)
  4. Yim, J. P., Chung, C. B., "Validity Review on Classification of Explosion Hazardous Area using Hypothetic Volume", Journal of the Korean Society of Safety, 29(6), 68-75, (2014) https://doi.org/10.14346/JKOSOS.2014.29.6.068
  5. Kim, E. S., Kim, J. H., Shim, J. H., Kim, J. P., Goh, J. M., Park, N. K., "A Forensic Engineering Study on Evaluation of Explosive Pressure and Velocity for LNG Explosion Accident using AUTODYN", Journal of the Korean Society of Safety, 30(4), 56-63, (2015) https://doi.org/10.14346/JKOSOS.2015.30.4.56
  6. Hong, B. J., Lee, H. J., Jang, C. B., "Comparison of H2, LNG, and LPG explosion characteristics in a limited space using CFD Simulation", Journal of the Korean Institute of Gas, 12-21, (2016)
  7. Leem, S. H., Lee, J. R., Huh, Y. J., "A Study on Estimation of Human Damage for Overpressure by Vapor Cloud Explosion in Enclosure Using Probit Model", Journal of the Korean Institute of Gas, 12(1), 42-47, (2008)
  8. Yoon, Y. K., "Evaluation of Blast Pressure Generated by an Explosion of Explosive Material", EXPLOSIVES & BLASTING, 36(4), 26-34, (2018) https://doi.org/10.22704/KSEE.2018.36.4.026
  9. Leem, S. H., Huh, Y. J., "A study on the estimation of human damage caused by vapor cloud ex- plosion(VCE) in LPG filling station", Journal of the Korean Institute of Gas, 14(2), 15-21 (2010)
  10. Kim, J. H., Lee, M. K., Kil, S. H., Lee, J. H., Jo, Y. D., Moon, J. S., "Analysis of gas flow behavior with experiments for LPG releasing and 3D mapping of gas sensor", Journal of the Korean Institute of Gas, 21(5), 45-55, (2017) https://doi.org/10.7842/KIGAS.2017.21.5.45
  11. Choi, J. W., Li, L. N., Park, C.W., Lee, S. H., Kim, D. J., "Dispersion Characteristics of hydrogen gas by the effect of leakage hole size in enclosure space", Journal of the korea academia-industrial cooperation society, 17(5), 26-35, (2016) https://doi.org/10.5762/KAIS.2016.17.5.26
  12. Lee, M. K., Lee, K. O., Kim, Y. G., "LPG Cylinder Leak Experiment from Multiple Leak Scenarios", Journal of the Korean Institute of Gas, 23(6), 61-66 (2019) https://doi.org/10.7842/KIGAS.2019.23.6.61
  13. Eum, J. H., "Management Strategies of Local Cold Air in Jeongmaek for utilizing urban Ventilation Corridor*- A Case Study of the Nak-nam Jeongmaek -", Journal of the Korean Association of Geographic Information Studies, 22(1), 154-167, (2019) https://doi.org/10.11108/KAGIS.2019.22.1.154
  14. Sievers, U., "Das Kaltluftabflussmodell KLAM 21. Berichte des Deutschen Wetterdienstes 227. Offenbach am Main", 22-35, (2005)
  15. Eum, J. H., "Management Strategies of Local Cold Air in Jeongmaek for utilizing urban Ventilation Corridor-A Case Study of the Nak-nam Jeongmaek-", Journal of the Korean Association of Geographic Information Studies, 22(1), 154-167, (2019) https://doi.org/10.11108/KAGIS.2019.22.1.154
  16. National Institute of Chemical Safety, "ALOHA user guide", (2015)
  17. Shao, H., Duan, C., "Risk Quantitative Calculation and ALOHA Simulation on the Leakage Accident of Natural Gas Power Plant", Procedia Engineering, 45, 352-359, (2012) https://doi.org/10.1016/j.proeng.2012.08.170
  18. Robert J., William L., Debra S.-B., R. Michael R., "ALOHA® (Areal Locations of Hazardous Atmospheres) 5.4.4 Technical Documentation", NOAA Technical Memorandum NOS OR&R 43, 45, (2013)