DOI QR코드

DOI QR Code

Improvement of Charge Strength Guideline for Multi-Energy Method by Comparing Vapor Cloud Explosion Cases

증기운 폭발 사례 비교를 통한 멀티에너지법의 폭발강도계수 지침 개선

  • Received : 2021.08.31
  • Accepted : 2021.09.24
  • Published : 2021.12.31

Abstract

Various blast pressure calculation methods have been developed for predicting the explosion pressure of vapor cloud explosions. Empirical methods include the TNT equivalent method, and multi-energy method. The multi-energy method uses a charge strength that considers environmental factors. Although the Kinsella guideline was provided to determine the charge strength, there are limitations such as guidelines related to ignition sources. In this study, we proposed an improved charge strength guideline, by subdividing the ignition source intensity and expanding the type classification through literature analysis. To verify the improved charge strength guideline, and to compare it with the result obtained using the Kinsella guideline, four vapor cloud explosion cases which could be used to estimate the actual blast pressure were investigated. As a result, it was confirmed that the Kinsella guidelines showed an inaccurate, that is, wider pressure than the actual estimated blast pressure. However, the improved charge strength guideline enabled the selection of the intensity of the ignition source, and more subdivided types through the expansion of classification, hence it was possible to calculate the blast pressure relatively close to that of the actual case.

증기운 폭발의 폭압을 예측하거나 위험성 분석을 위하여 다양한 폭압 산정법이 존재하지만 대표적으로 경험적 방법인 TNT 등가량 환산법과 멀티에너지법을 주로 사용한다. 멀티에너지법은 환경적 요인을 고려한 폭발강도계수를 사용한다. 본 연구에서는 문헌 분석을 통하여 점화원 강도를 세분하고 강도분류를 확장하여 개선한 폭발강도계수 가이드라인을 제안하였다. 개선한 폭발강도계수 가이드라인의 합리성 검증과 기존 Kinsella 가이드라인과의 비교를 위하여 실제 추정 폭압과 대조가 가능한 4가지의 증기운 폭발 사례를 적용하였다. 결과적으로 기존 Kinsella 가이드라인은 실제 추정 폭압에 비하여 광범위하거나 부정확한 폭압 산정 결과를 나타내는 것으로 확인하였다. 반면, 개선한 폭발강도계수 가이드라인은 명확한 점화원의 강도 선정이 가능하고 분류의 확장을 통하여 더욱 세분화된 계수 값의 선정이 가능함에 따라 실제 사례와 비교적 유사한 폭압 산정이 가능하다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(No. 21RMPP-C163162-01).

References

  1. Alonso, F.D., Ferradas, E.G., Perez, J.F.S., Aznar, A.M., Gimeno, J.R. (2006) Characteristic Overpressure-Impulse-Distance Curves for Vapour Cloud Explosions Using the TNO Multi-Energy Model, J. Haz. Mater., 137(2), pp.734~741. https://doi.org/10.1016/j.jhazmat.2006.04.005
  2. ASCE (2010) Design of Blast-Resistant Buildings in Petrochemical Facilities, American Society of Civil Engineers, Virginia, p.300.
  3. Assael, M.J., Kakosimos, K.E. (2010) Fires, Explosions and Toxic Gas Dispersions, CRC press, New York, p.346.
  4. Baker, Q.A., Tang, M.J., Scheier, E.A., Silva, G.J. (1996) Vapor Cloud Explosion Analysis, Proc. Safety Progress, 15(2), pp.106~109. https://doi.org/10.1002/prs.680150211
  5. CCPS (1994) Guidelines for Evaluating the Characteristic of Vapor Cloud Explosions, Flash Fires, and BLEVEs, CCPS, New York, p.394.
  6. Chamberlain, G., Pekalski, A., Oran, E.S. (2019) Mechanisms and Occurrence of Detonations in Vapor Cloud Explosions-Supplementary Material, Waverton Consultancy Ltd., UK, p.75.
  7. Chen, C., Khakzad, N., Reniers, G. (2020) Dynamic Vulnerability Assessment of Process Plants with Respect to Vapor Cloud Explosions, Reliab. Eng. Syst. Saf., 200(2):106934, pp.1~15.
  8. CPR14E (2005) Methods for the Calculation of Physical Effects, TNO, Netherlands, p.870.
  9. CSB (2007) Investigation Report Refinery Explosion and Fire, BP Texas, U.S. Chemical Safety and Hazard Investigation Board, p.341.
  10. FAIR (2005) Isomerization Unit Explosion Final Report Texas, Fatal Accident Investigation Report, USA, p.192.
  11. HSE (1998) GAME: Development of Guidance for the Application of the Multi-Energy Method, TNO, Health and Safety Executive, p.124.
  12. Kinsella, K.G. (1993) A Rapid Assessment Methodology for the Prediction of Vapour Cloud Explosion Overpressure, Int. Conf. and Exhibition on Safety, Health and Loss Prev. in the Oil, Chemical and Process Industries, Singapore.
  13. Lee, S.H., Kim, H.S. (2021) Study on the Calculation of the Blast Pressure of Vapor Cloud Explosions by Analyzing Plant Explosion Cases, J. Comput. Struct. Eng. Inst. Korea, 34(1), pp.1~8. https://doi.org/10.7734/COSEIK.2021.34.1.1
  14. MARSH (2016) The 100 Largest Losses 1974-2015, Marsh Ltd., UK, p.44.
  15. MoSA (1976) Report on the Explosion at DSM in Beek, Dutch Ministry of Social Affair, Netherland.
  16. Oran, E.S., Chamberlain, G., Pekalski, A. (2020) Mechanisms and Occurrence of Detonations in Vapor Cloud Explosions, Progress in Energy and Combustion Science, 77, pp.1~37.
  17. Park, D.J., Lee, Y.S. (2009) A Comparison on Predictive Models of Gas Explosion, Korean J. Chem. Eng., 26(2), pp.313~323. https://doi.org/10.1007/s11814-009-0054-5
  18. Ree, S.H., Kang, T., Lee, H.R., Shin, M.S. (2020) Empirical Gas Explosion Models for Onshore Plant Structure: Review and Comparative Analysis, J. Perform. Constr. Facil., 34(4), pp.1~10.
  19. Roberts, M.W., Crowley, W.K. (2004) Evaluation of Flammability Hazards in Non-nuclear Safety Analysis, In Proc., EFCOG, Las Vegas: EFCG.
  20. RR1113 (2017) Review of Vapour Cloud Explosion Incidents, Health and Safety Executive, p.326.
  21. RR226 (2004) Development of a Method for the Determination of on-site Ignition Probabilities, Health and Safety Executive, p.192.
  22. Sadee, C., Samuels, D.E., O'Brien, T.P. (1977) The Characteristics of the Explosion of Cyclohexane at the NYPRO (UK) Flixborough Plant 1st June 1974, J. Occup. Accid., 1(3), pp.203~235. https://doi.org/10.1016/0376-6349(77)90001-3
  23. Sari, A. (2011) Comparison of TNO Multienergy and Baker-Strehlow-Tang Models, Proc. Safety Progress, 30(1), pp.23~26. https://doi.org/10.1002/prs.10424
  24. Van den Berg, A.C. (1985) The Multi-Energy Method: A Framework for Vapour Cloud Explosion Blast Prediction, J. Haz. Mater.,12(1), pp.1~10. https://doi.org/10.1016/0304-3894(85)80022-4
  25. Wingerden, K., Salvesen, H.-C., Perbal, R. (1995) Simulation of an Accidental Vapor Cloud Explosion, Proc. Safety Progress, 14(3), pp.173~181. https://doi.org/10.1002/prs.680140306
  26. Zhang, Q., Li, D. (2017) Comparison of the Explosion Characteristics of Hydrogen, Propane, and Methane Clouds at the Stoichiometric Concentrations, Inter. J. Hydrogen Energy, 42(21), pp.14794~14808. https://doi.org/10.1016/j.ijhydene.2017.04.201