DOI QR코드

DOI QR Code

Optimization to Control Buckling Temperature and Mode Shape through Continuous Thickness Variation of Composite Material

복합소재의 연속 두께 변화를 통한 좌굴온도 및 모드형상 최적화

  • Lee, Kang Kuk (Research & Development, Hyundai Mobis) ;
  • Lee, Hoo Min (Department of Mechanical Convergence Engineering, Hanyang University) ;
  • Yoon, Gil Ho (Division of Mechanical Engineering, Hanyang University)
  • 이강국 (현대모비스 기술연구소) ;
  • 이후민 (한양대학교 융합기계공학과) ;
  • 윤길호 (한양대학교 기계공학부)
  • Received : 2021.08.06
  • Accepted : 2021.10.25
  • Published : 2021.12.31

Abstract

In this study, we presented a novel size optimization framework to control the linear buckling temperature and several buckling modes of plates, by optimizing thickness values of composite structures for practical engineering applications. Predicting the buckling temperature and mode shape of structures is a vital research topic in engineering to achieve structural stability. However, optimizing designs of engineering structures through engineering intuition is challenging. To address this limitation, we proposed a method that combines finite element simulation and size optimization. Based on the idea that the structural buckling temperature and mode shape of a plate are affected by the thickness of the structure, the thickness values of the nodes of the target structure were set as the design variables in this optimization method; and the buckling temperature values, and buckling mode shapes were set as the objective functions. This size optimization method enabled the determination of optimal thickness distributions, to induce the desired buckling temperature values and mode shapes. The validity of the proposed method was verified in terms of their buckling temperature values and buckling mode shapes, using several numerical examples of rectangular composite structures.

본 논문에서는 구조물의 좌굴 온도와 좌굴 형상을 제어하는 새로운 크기 최적화 방법에 대해서 소개한다. 구조적 안정성 관점에서 구조물의 좌굴 온도와 좌굴 형상을 예측하는 것은 중요한 주제 중 하나이다. 이를 공학적인 직관을 통해 예측하고 최적화된 구조 설계를 하는 것은 너무나 어려운 과제이다. 이러한 한계점을 해결하기 위해 본 연구에서는 유한요소 시뮬레이션과 치수 최적 설계 방식의 조합을 제안한다. 구조물의 좌굴 온도와 좌굴 형상이 구조물의 두께에 영향을 받는다는 생각에서 착안해 설계 변수를 구조물의 노드의 두께 값으로 설정했다. 좌굴 온도 값과 좌굴 형상을 목적 함수로 정해진 부피 값을 제약 조건으로 두었다. 치수 최적 설계를 통해 원하는 좌굴 온도와 좌굴 형상을 유도하기 위한 최적의 두께 분포를 결정할 수 있다. 제안된 치수 최적 설계의 타당성은 본 논문의 다양한 직사각형 복합 구조물 예제들을 사용해서 검증하였다.

Keywords

Acknowledgement

This work was supported by Hyundai Mobis, and Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government(MOTIE). (2021202080026D, Development of platform technology and operation management system for design and operating condition diagnosis of fluid machinery with variable devices based on AI/ICT).

References

  1. Bai, J., Xiong, J. (2014) Temperature Effect on Buckling Properties of Ultra-thin-walled Lenticular Collapsible Composite Tube Subjected to Axial Compression, Chinese J. Aeronaut., 27(5), pp.1312~1317. https://doi.org/10.1016/j.cja.2014.03.028
  2. Dong, X., Ding, X., Li, G., Lewis, G.P. (2020) Stiffener Layout Optimization of Plate and Shell Structures for Buckling Problem by Adaptive Growth Method, Struct. & Multidiscip. Optim., 61, pp.301~318.
  3. Fu, T., Chen, Z., Yu, H., Li, C., Zhao, Y. (2019) Thermal Buckling and Sound Radiation behavior of Truss Core Sandwich Panel Resting on Elastic Foundation, Int. J. Mech. Sci., 161, 105055. https://doi.org/10.1016/j.ijmecsci.2019.105055
  4. George, N., Jeyaraj, P. (2018) Nonuniform Heat Effects on Buckling of Laminated Composite Beam: Experimental Investigations, Int. J. Struct. Stab. & Dyn., 18, 1850153. https://doi.org/10.1142/s0219455418501535
  5. Lee, H.M., Yoon, G.H. (2020) Size Optimization Method for Controlling the Buckling Mode Shape and Critical Buckling Temperature of Composite Structures, Compos. Struct., 255, 112902. https://doi.org/10.1016/j.compstruct.2020.112902
  6. M oulin, D., Combescure, A., Acker, D. (1989) A Review of Thermal Buckling Analysis Methods, Nucl. Eng. & Des., 116(3), pp.255~263 https://doi.org/10.1016/0029-5493(89)90086-1
  7. Panda, S., Natarajan, R. (1981) Analysis of Laminated Composite Shell Structures by Finite Element Method, Comput. & Struct., 14(3-4), pp.225~230. https://doi.org/10.1016/0045-7949(81)90008-0
  8. Rakow, J.F., Waas, A.M. (2005) Thermal Buckling of Metal Foam Sandwich Panels for Convective Thermal Protection Systems, J. Spacecr. & Rocket., 42(5), pp.832~844. https://doi.org/10.2514/1.9741
  9. Wu, C., Fang, J., Li, Q. (2019) Multi-material Topology Optimization for Thermal Buckling Criteria, Comput. Methods Appl. Mech. & Eng., 346(1), pp.1136~1155. https://doi.org/10.1016/j.cma.2018.08.015