• Title/Summary/Keyword: vacuum pump

Search Result 362, Processing Time 0.028 seconds

Quasi-quantitative estimation on backstreaming characteristics of a turbomolecular pump (터보분자펌프 역류특성의 준정량적 평가)

  • 인상렬;박미영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Pumping characteristics of a turbomolecular pump are influenced by interrelations of the down-stream and upstream pumping speeds (transmission probabilityxaperture conductance), and of gas flow rates (pumping speedxentrance pressure) in two directions. The pumping speed, one of the most important items characterized the performance of a pump, is given by dividing the net flow rate, that is, the difference between the counter flow rates by the pressure at the pumping port. The maximum compression ratio is defined as the ratio of the downstream pumping speed to the upstream one. Because these directional characteristics affect each other and are functions of the pressures of both sides, it is difficult to distinguish the relevant factors. However, quasi-quantitative analyses on them can be done if considering carefully the results of measuring the pumping speed and the maximum compression ratio.

  • PDF

A Destruction Pattern Analysis of a Turbo-Molecular Pump According to the Foreline Clamp Damage in an ICP Dry Etcher for 300 mm Wafers

  • Jeong, Jinyong;Lee, Intaek;Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.24 no.2
    • /
    • pp.27-32
    • /
    • 2015
  • We analyzed the destruction patterns of a turbo-molecular pump (TMP) resulting from its sudden exposure of a foreline to the atmospheric pressure due to a destruction of the foreline connecting clamp of an ICP dry etcher for 300 mm wafers during high-vacuum operation ($5{\times}10^{-6}$ Torr). Unlike in the case of view port's breakage, the TMP's rotor module was crashed inside the chamber. The primary damage resulted from the collision of the blades and stators, and the secondary damage resulted from the breaking of the rotor - driving shaft assembly. The fixing screws of the rotor and axial shaft were bent and broken when the TMP controller output the maximum current even after the crash event. Electrical power consumption analysis of the TMP power controller confirmed it. The stress distributions were analyzed by a finite element method using CFD-ACE+ multi physics software. Rotating inertia of each parts and kinetic energies were calculated as well. 68% of the rotational kinetic energy is deposited by the rotor - shaft module.

Construction and Tests of the Vacuum Pumping System for KSTAR Current Feeder System (KSTAR 전류전송계통 진공배기계 구축 및 시운전)

  • Woo, I.S.;Song, N.H.;Lee, Y.J.;Kwag, S.W.;Bang, E.N.;Lee, K.S.;Kim, J.S.;Jang, Y.B.;Park, H.T.;Hong, Jae-Sik;Park, Y.M.;Kim, Y.S.;Choi, C.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.483-488
    • /
    • 2007
  • Current feeder system (CFS) for Korea superconducting tokamak advanced research(KSTAR) project plays a role to interconnect magnet power supply (MPS) and superconducting (SC) magnets through the normal bus-bar at the room temperature(300 K) environment and the SC bus-line at the low temperature (4.5 K) environment. It is divided by two systems, i.e., toroidal field system which operates at 35 kA DC currents and poloidal field system wherein 20$\sim$26 kA pulsed currents are applied during 350 s transient time. Aside from the vacuum system of main cryostat, an independent vacuum system was constructed for the CFS in which a roughing system is consisted by a rotary and a mechanical booster pump and a high vacuum system is developed by four cryo-pumps with one dry pump as a backing pump. A self interlock and its control system, and a supervisory interlock and its control system are also established for the operational reliability as well. The entire CFS was completely tested including the reliability of local/supervisory control/interlock, helium gas leakage, vacuum pressure, and so on.

Lifetime Enhancement of Aerospace Components Using a Dual Nitrogen Plasma Immersion ion Implantation Process

  • Honghui Tong;Qinchuan Chen;Shen, Li-Lu;Yanfeng Huo;Ke Wang;Tanmin Feng;Lilan Mu;Jun Zha;Paul K. Chu
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.2
    • /
    • pp.62-66
    • /
    • 2002
  • Hydraulic pumps are used to control the landing wheels of aircrafts, and their proper operation is vital to plane safety It is well hewn that adhesive wear failure is a major cause of pump failure. A dual nitrogen plasma immersion ion implantation process calling for the implantation of nitrogen at two different energies and doses has been developed to enhance the surface properties of the disks in the pumps. The procedures meet the strict temperature requirement of <200$^{\circ}C$, and after the treatment, the working lifetime of the pumps increases by more than a factor of two. This experimental protocol has been adopted by the hydraulic pump factory as a standard manufacturing procedure.

  • PDF

Hydrogen adsorption properties of the large cryosorption pump (대용량 크라이오 펌프의 수소 흡착특성)

  • In S. R.;Kim T. S.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2005
  • Pumping performance of large cryosorption pumps of different types installed on the 60 $m^3$ test stand for developing and testing ion sources and beam line components of the NBI system was investigated. Hydrogen adsorption and desorption characteristics of the cryosorption panels were analyzed using the temporal change of the hydrogen spectrum obtained with short introduction of the hydrogen gas as cooling the panel, and simulations on the mutual influence between related parameters were also carried out.

Design and Implementation of a Fault-Tolerant Magnetic Bearing System For Turbo-Molecular Vacuum Pump (터보분자펌프용 고장허용 자기베어링 시스템 설계 및 개발)

  • Cho, Sung-Rak;Noh, Myoung-Gyu;Park, Byung-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.760-765
    • /
    • 2004
  • One of the obstacles for a magnetic bearing to be used in the wide range of industrial applications is the failure modes associated with magnetic bearings, which we don't expect for conventional passive bearings. These failure modes include electric power outage, power amplifier faults, position sensor faults, and the malfunction of controllers. Fault-tolerant magnetic bearing systems have been proposed so that the system can operate in spite of some faults in the system. In this paper, we designed and implemented a fault-tolerant magnetic bearing system for a turbo-molecular vacuum pump. The system can cope with the actuator/amplifier faults as well as the faults in position sensors, which are the two major fault modes in a magnetic bearing system.

  • PDF

이온소스 Cathode 형태가 이온 빔에 미치는 영향

  • Min, Gwan-Sik;Lee, Seung-Su;Yun, Ju-Yeong;Jeong, Jin-Uk;O, Eun-Sun;Hwang, Yun-Seok;Kim, Jin-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.145.1-145.1
    • /
    • 2014
  • 변형된 end-Hall type의 이온 소스를 사용하여 이온 소스의 형태에 따라 달라지는 이온 빔의 변화를 측정하였다. 이온 소스 cathode의 wehnelt mask를 세 가지 종류로 제작하였으며, 생성된 이온 빔을 이용하여 Al이 sputter 방식으로 증착된 유리 기판을 etching 하였다. 실험 결과 wehnelt mask의 모양에 따라 focus, broad, strate의 형태로 이온 빔이 생성되는 것을 확인하였다. Al이 증착된 유리 기판의 제작을 위하여 Al target을 사용하여 RF power로 150 W, 2분간 sputtering을 하였고, 이온 소스와 기판사이의 거리를 1 cm씩 증가시켜가며 이온 빔을 2,500 V로 3분간 유리 기판을 etching한 후, 유리 기판이 etching된 모양을 통해 이온 빔의 형태를 분석하였다. 본 연구를 위하여 sputtering과 이온 빔 처리가 가능한 챔버를 제작하였으며, scroll pump와 turbo molecular pump를 사용하였다. Base pressure $1.5{\times}10^{-6}Torr$에서 실험이 진행되었고, 불활성 기체 Ar을 사용하였다. Ar 기체를 주입시 pressure는 $2.6{\times}10^{-3}Torr$였다.

  • PDF

A Study of the numerical method on the molecular transition flow for the rotating blades (회전날개주위 분자천이유동의 수치해석방법에 관한 연구)

  • 허중식;황영규;박종윤
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.83-92
    • /
    • 1999
  • Pumping performance of a disk-type molecular drag pump for a hybrid molecular pump is numerically analyzed by the direct simulation onte-Carlo method. The flows in pumping channels are three-dimensional (3D) in a molecular transition regime. The main difficulty in modeling a 3D case comes from the rotating frame of reference. Thus, trajectories of particles ar no longer straight lines. In the present study, trajectories of particles are calculated by integrating a system of differential equations including the Coriolis and centrifugal forces. The null-collisions. The present numerical results molecular model is used for calculation of molecular collisions. The present numerical results significantly disagree with the previously known ones. This indicates that an actual pumping passage is very limited to a narrow region due to the significant backstreaming of molecules from the outlet.

  • PDF

Computer Simulation on the Performance of Air-Cooled Condenser for an Absorption Heat Pump (흡수식 열펌프용 공냉식 응축기의 성능특성에 관한 시뮬레이션)

  • 박윤철;민만기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1999-2011
    • /
    • 1995
  • Computer simulation was conducted to study performance characteristics of air-cooled condenser of a double effect absorption heat pump with variations of saturation pressures and mass flow rates of the refrigerant ; volume flow rates, relative humidities and temperatures of the air The vertically installed condenser had the staggered tube array with continuous plate fins of wavy type. When the saturation pressure of the condenser was decreased from 760 torr to 20 torr, heat transfer rates and condensing rates of refrigerant were decreased. If excess refrigerant flows in the condenser, the pressure and saturation temperature of the condenser were increased which makes the refrigerating capacity of an absorption heat pump reduced.

KOMAC RFQ Vacuum System

  • Han, J.M.d;S.H.Jeong;Cho, Y.S.;Park, B.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.33-33
    • /
    • 1999
  • The design of a vacuum pumping system for the KOMAC (Korea Multipurpose Accelerator Complex) RFQ(Radio-Frequency Quadrupole) linac is described. [Fig] Resulted from the lost proton beam, gas streaming from the LEBT (Low Energy Beam Transport) and out-gassing from the surfaces of the RFQ cavity and vacuum plumbing, the total gas load will be on the order of 7.2$\times$10-4 Torr-liters/sec, consisting mainly of hydrogen. The system designed to pump on a continual basis with redundancy to ensure that the minimal operating vacuum level of 1.0$\times$10-6 Torr is maintained even under abnormal conditions. Details of the design, performance analysis and the preliminary test results of the cryogenic pumps are presented.

  • PDF