• 제목/요약/키워드: vacuum generation

검색결과 394건 처리시간 0.032초

Characterization of Al2O3 Thin Film Encasulation by Plasma Assisted Spatial ALD Process for Organic Light Emitting Diodes

  • Yong, Sang Heon;Cho, Sung Min;Chung, Ho Kyoon;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.234.2-234.2
    • /
    • 2014
  • Organic light emitting diode (OLED) is considered as the next generation flat panel displays due to its advantages of low power consumption, fast response time, broad viewing angle and flexibility. For the flexible application, it is essential to develop thin film encapsulation (TFE) to protect oxidation of organic materials from oxidative species such as oxygen and water vapor [1]. In many TFE research, the inorganic film by atomic layer deposition (ALD) process demonstrated a good barrier property. However, extremely low throughput of ALD process is considered as a major weakness for industrial application. Recently, there has been developed a high throughput ALD, called 'spatial ALD' [2]. In spatial ALD, the precursors and reactant gases are supplied continuously in same chamber, but they are separated physically using a purge gas streams to prevent mixing of the precursors and reactant gases. In this study, the $Al_2O_3$ thin film was deposited by spatial ALD process. We characterized various process variables in the spatial ALD such as temperature, scanning speed, and chemical compositions. Water vapor transmission rate (WVTR) was determined by calcium resistance test and less than $10-^3g/m^2{\cdot}day$ was achieved. The samples were analyzed by x-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscope (FE-SEM).

  • PDF

Novel Optical Properties of Si Nanowire Arrays

  • Lee, Munhee;Gwon, Minji;Cho, Yunae;Kim, Dong-Wook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.179.1-179.1
    • /
    • 2014
  • Si nanowires have exhibited unique optical characteristics, including nano-antenna effects due to the guided mode resonance, significant optical absorption enhancement in wide wavelength and incident angle range due to resonant optical modes, graded refractive index, and scattering. Since Si poor optical absorption coefficient due to indirect bandgap, all such properties have stimulated proposal of new optoelectronic devices whose performance can surpass that of conventional planar devices. We have carried out finite-difference time-domain simulation studies to design optimal Si nanowire array for solar cell applications. Optical reflectance, transmission, and absorption can be calculated for nanowire arrays with various diameter, length, and period. From the absorption, maximum achievable photocurrent can be estimated. In real devices, serious recombination loss occurring at the surface states is known to limit the photovoltaic performance of the nanowire-based solar cells. In order to address such issue, we will discuss how the geometric parameters of the array can influence the spatial distribution of the optical field (resulting optical generation rate) in the nanowires.

  • PDF

Highly Sensitive Flexible Organic Field-Effect Transistor Pressure Sensors Using Microstructured Ferroelectric Gate Dielectrics

  • 김도일;이내응
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.277.2-277.2
    • /
    • 2014
  • For next-generation electronic applications, human-machine interface devices have recently been demonstrated such as the wearable computer as well as the electronic skin (e-skin). For integration of those systems, it is essential to develop many kinds of components including displays, energy generators and sensors. In particular, flexible sensing devices to detect some stimuli like strain, pressure, light, temperature, gase and humidity have been investigated for last few decades. Among many condidates, a pressure sensing device based on organic field-effect transistors (OFETs) is one of interesting structure in flexible touch displays, bio-monitoring and e-skin because of their flexibility. In this study, we have investigated a flexible e-skin based on highly sensitive, pressure-responsive OFETs using microstructured ferroelectric gate dielectrics, which simulates both rapidly adapting (RA) and slowly adatping (SA) mechanoreceptors in human skin. In SA-type static pressure, furthermore, we also demonstrate that the FET array can detect thermal stimuli for thermoreception through decoupling of the input signals from simultaneously applied pressure. The microstructured highly crystalline poly(vinylidene fluoride-trifluoroethylene) possessing piezoelectric-pyroelectric properties in OFETs allowed monitoring RA- and SA-mode responses in dyanamic and static pressurizing conditions, which enables to apply the e-skin to bio-monitoring of human and robotics.

  • PDF

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

진공 브레이징을 이용한 고온가스냉각로 중간 열교환기 후보재료의 접합성능에 관한 예비시험 (Preliminary Investigation on Joining Performance of Intermediate Heat Exchanger Candidate Materials of Very High Temperature Reactor(VHTR) by Vacuum Brazing)

  • 김경호;김광호;이민구;김흥회;김성욱;김숙환
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.195-197
    • /
    • 2005
  • An intermediate heat exchanger(IHX) is a key component in a next-generation VHTR with process heat applications such as hydrogen production and also for an indirect gas turbine system. Therefore, high temperature brazing with nickel-based filler metal(MBF-15) was carried out to study the joining characteristic(microstucture, joining strength) of nickel-based superalloy(Haynes 230) by vacuum brazing. The experimental brazing was carried out at the brazing process, an applied pressure of about 0.74Mpa and the three kinds of brazing temperatures were 1100, 1150, and $1190^{\circ}C$ with holding time 5 minute. It's joining phenomena were analyzed by optical microscopy and scanning electron microscopy with EPMA. The results of microstructure in the centre-line region of a joint brazed with MBF-15 show a typical ternary eutectic of v-nickel, nickel boride and chromium boride.

  • PDF

POCl3를 사용한 pn접합 소자에 관한 연구 (Study on the pn Junction Device Using the POCl3 Precursor)

  • 오데레사
    • 한국진공학회지
    • /
    • 제19권5호
    • /
    • pp.391-396
    • /
    • 2010
  • 실리콘 태양전지의 pn 접합 계면특성을 조사하기 위해서 p형 실리콘 기판 위에 전기로를 이용한 $POCl_3$ 공정을 통하여 n형의 불순물을 주입하여 pn 접합을 만들었다. n형 불순물의 확산되어 들어가는 공정시간이 길고 공정온도가 높을수록 면저항은 줄어들었다. n형 불순물의 주입이 많아질수록 pn 접합 계면에서의 전자친화도가 줄어들면서 면저항은 감소되었다. 면저항이 줄어든 이유는 pn 접합계면에서 전자홀쌍이 생성되면서 이동길이가 길어지고 재결합률이 감소하였기 때문이다. n형의 불순물 확산공정시간이 긴 태양전지 셀에서 F.F. 계수가 높게 나타났으며, 효율도 높게 나타났다.

다층 나노임프린트 리소그래피 시스템 및 나노측정기술 (Technology for the Multi-layer Nanoimprint Lithography Equipments and Nanoscale Measurement)

  • 이재종;최기봉;김기홍;임형준
    • 진공이야기
    • /
    • 제2권1호
    • /
    • pp.10-16
    • /
    • 2015
  • With the recognition of nanotechnology as one of the future strategic technologies, the R&D efforts have been performed under exclusive supports of governments and private sectors. At present, nanotechnology is at the focus of research and public attention in almost every advanced country including USA, Japan, and many others in EU. Keeping tracks of such technical trends, center for nanoscale mechatronics and manufacturing (CNMM) was established in 2002 as a part of national nanotechnology promotion policy led by ministry of science and technology (MOST) in Korea. It will hold widespread potential applications in electronics, optical electronics, biotechnology, micro systems, etc, with the promises of commercial visibility and competitiveness. In this paper, wafer scale multilayer nanoimprint lithography technology which is well-known the next generation lithography, roll-typed nanoimprint lithography (R-NIL), roll-typed liquid transfer imprint lithography (R-LTIL), the key technology for nanomanufacturing and nanoscale measurement technology will be introduced. Additionally, its applications and some achievements such as solar cell, biosensor, hard disk drive, and MOSFET, etc by means of the developed multilayer nanoimprint lithography system are introduced.

국부적 후면 접촉 구조를 가지는 실리콘 태양전지의 Passivation 특성과 태양전지 특성에 관한 연구

  • 안시현;박철민;장경수;김선보;장주연;박형식;송규완;최우진;최재우;이준신
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.602-602
    • /
    • 2012
  • TCAD simulation을 이용하여 국부적 후면 접촉 구조를 가지는 단결정 실리콘 태양전지구조를 형성하고 실리콘 기판과 후면 passivation막 사이의 계면 특성 변화에 따른 태양전지의 전기적, 광학적 특성 변화에 대해서 연구하였다. 상기 연구를 진행하기 위하여 process simulator를 이용하여 후면에 국부적인 doped BSF region을 형성하고 device simulator를 이용하여 실리콘 기판과 후면 passivation막 사이의 carrier recombination 특성을 변화시켜 태양전지의 광학적, 전기적 특성을 분석하였다. Carrier recombination velocity의 감소에 따라 국부적 후면 접촉구조를 갖는 태양전지의 특성이 증가하는 것으로 관찰되었다. 이는 후면에서 실리콘과 박막 사잉의 결함이나, dangling bond에 의해서 carrier들이 재결합하는 확률이 줄어듦과 동시에, 후면 전극에서 carrier를 수집할 수 있는 확률이 커지기 때문이며, 800 nm 이상의 장파장영역 광원이 후면 passivation 박막에 의한 reflection으로 이차적인 carrier generation으로 인한 영향으로 판단되며 quantum efficiency 분석으로 규명하였다.

  • PDF

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • 김상욱
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

$TiO_2$ 기반 고효율 광촉매의 수소 생산 (Titanium oxide-based photocatalysts for highly efficient hydrogen generation)

  • 최진영;박원웅;전준홍;문선우;김은겸;임상호;한승희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.215-215
    • /
    • 2012
  • 급속한 산업의 발달은 심각한 환경오염 및 에너지 문제를 가져왔다. 이를 해결하기 위한 방안으로 수소에너지에 대한 관심이 증가하고 있으며, 수소에너지를 생산하는 방법 중 하나로 태양에너지를 원천으로 하는 광촉매(photocatalyst)에 대한 연구가 점차적으로 증가하고 있는 추세이다. 현재 광촉매로 가장 많이 사용되는 $TiO_2$의 경우, 뛰어난 광활성과 저렴한 가격, 광 안정성, 화학적 안정성을 가짐에도 불구하고, 3.2 eV라는 넓은 band gap을 가지기 때문에 385 nm 이상의 긴 파장을 갖는 가시광선은 흡수할 수 없다. 또한, 광촉매 반응과정 중 recombination으로 인한 효율의 손실이 크기 때문에 이러한 문제들을 해결하기 위해 많은 연구가 진행되어 왔다. 본 연구에서는 ICP-assisted DC magnetron sputtering 방법을 이용하여 높은 결정성을 갖는 $TiO_2$ 박막을 제조하였다. 제작된 $TiO_2$ 박막은 높은 광촉매 특성을 나타냈으며, 또한 $TiO_2$의 anatase phase와 rutile phase의 bilayer structure를 통하여 recombination을 감소시킴으로써 높은 효율을 갖는 광촉매를 제작하였다. 박막의 chemical state와 crystallinity를 확인하기 위하여 X-ray photoelectron spectroscopy와 X-ray diffractometer를 이용하여 분석을 수행하였으며, 물 분해 장치(water splitting device)를 제작하여 수소와 산소 생성시 흐르는 전류를 측정하여 광촉매 특성을 평가하였다.

  • PDF