• Title/Summary/Keyword: urban subcatchment

Search Result 11, Processing Time 0.057 seconds

Study on the Inundation Risk Evaluation by the Relationship Analysis (다양한 침수인자간의 상관관계 분석을 통한 침수위험지역 예측)

  • Choi, Sung-Wook;Jun, Hwan-Don;Park, Moo-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.115-118
    • /
    • 2008
  • In this study, PROMETHEE(Preference Ranking Organization METHod for Enrichment Evaluations) which is one of the multi criteria decision making methods is applied to estimate the relative inundation risk of the urban subcatchment. For this purpose, five factors which have an effect on the inundation risk are selected and used to perform PROMETHEE. Those are elevation average, slope average, density of conduit, population and sediment yields per unit area of each subcatchment. Based on them, PROMETHEE is performed and the relative inundation risk for each subcatchment is estimated. Sensitivity anlysis is conducted to evaluate each factor's effect on subcatchment and it is found that suggested method can be used to establish a practical guide to mitigate the inundation.

  • PDF

Development of Adjusted Subcatchment Width Equation in SWMM (SWMM의 수정유역폭식 개발)

  • Bae, Deg-Hyo;Jang, Min-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.2
    • /
    • pp.105-115
    • /
    • 2009
  • The objectives of this study are to deduce a problem of existing subcatchment width equation in Storm Water Management Model(SWMM) and to analyze the suitability of a new adjusted subcatchment width equation on both ideally assumed watersheds and an actual urban watershed area. The problems of existing subcatchment equation are issued on the theoretical review of the equation and from the model application on different types of simplified assumed watershed. The adjusted equation, proposed in this study, that considers the pipe flows in addition to the surface flows on small subcatchment can improve the limitation of existing equation when applied on the assumed watersheds. Also, Gunja watershed with 96.3 ha is selected and collected rainfall-runoff events for the feasibility study of the proposed equation on actual urban watershed area. The results represent that the simulated flows from adjusted equation rather than the simulated flows from existing equation are well agreed with observed ones.

Development of an Inundation Risk Evaluation Method Based on a Multi Criteria Decision Making (다기준 의사결정기법을 기반으로 하는 침수위험 평가기법의 개발)

  • Park, Moo-Jong;Choi, Sung-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.4
    • /
    • pp.365-377
    • /
    • 2008
  • In this study, PROMETHEE(Preference Ranking Organization METHod for Enrichment Evaluations) which is one of the multi criteria decision making methods is applied to estimate the relative inundation risk of the urban subcatchment. For this purpose, several factors which have an effect on the inundation risk are selected and used to perform PROMETHEE. Those are elevation average, slope average, density of conduit, population and sediment yields per unit area of each subcatchment. Based on them, PROMETHEE is performed and the relative inundation risk for each subcatchment is estimated. For the validation of the suggested method, the results from the suggested method are compared with the historical inundation records occured on 1998 and the relative inundation risk estimated by the method considering sediment yields per unit area only. From the comparison, it is found that the suggested method may generate better results to estimate the relative inundation risk of each subcatchment than the method considering sediment yields per unit area only. Also, it can be applied to establish a rehabilitation order of subcatchments for mitigating the inundation risk.

Impacts on water-cycle by land use change and effects of infiltration trenches in Asan New town (토지이용 변화가 물순환에 미치는 영향과 침투트렌치 설치 효과 분석 - A 신도시 지구를 중심으로 -)

  • Hyun, Kyoung-Hak;Lee, Jung-Min
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.6
    • /
    • pp.691-701
    • /
    • 2010
  • As the water-cycle is transformed by increasing of the impermeable area in process of urbanization, decentralized rainwater management facilities(infiltration, harvesting and retention facilities) as source control are considered to be a method of restoring water-cycle of urban and reducing runoff. SWMM model was used to analyse the change of water-cycle structure before and after development in A new town watershed. Modified SWMM code was developed to apply infiltration facilities. The modified SWMM was used to analyse the change of water-cycle before and after infiltration trench setup in AJ subcatchment. Changes of the impervious area by development and consequent increase in runoff were analyzed. These analyses were performed by a day rainfall during ten years from 1998 to 2007. According to the results, surface runoff increased from 51.85% to 65.25 %, and total infiltration volume decreased from 34.15 % to 21.08 % in A newtown watershed. If more than 80 infiltration trenches are constructed in AJ subcatchment, the low flow and the drought flow increases by around 47%, 44%, separately. The results of this study, infiltration trench is interpreted to be an effective infiltration facility to restore water-cycle in new town.

Management Scheme of Urbanization Runoff Using XP-SWMM (XP-SWMM을 이용한 도시화 유역에서의 유출 관리 방안 연구)

  • Lee, Beum-hee;Chai, Jun-young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1167-1172
    • /
    • 2004
  • Recently, runoff characteristics of urban area are changing because of the increase of impervious area by rapid increasing of population and industrialization, urbanization. It needs to extract the accurate topological and hydrological parameters of watersheds in order to manage water resource efficiently. In this paper, rainfall-runoff analysis in An-Yang stream basin was made using GIS(Geographic Information System) and XP-SWMM(Export Stormwater and Wastewater Management Model). The basin was divided into 13 sub-basins using GIS. The area, slope, width of each subcatchment and length, slop of each stream reach were acquired from topographic maps, and imperviousness rate, land use types, infiltration capacities of each subcatchment from land use maps and soil maps using GIS. We gave th runoff management method of urbanization area us ing XP-SWMM.

  • PDF

Development of AV2SWMM Module for Bimodal Tram Disaster Management System (바이모달 트램 재해관리 시스템 입력자료 구축을 위한 AV2SWMM 모듈 개발)

  • Kim, Jong-Gun;Park, Young-Kon;Yoon, Hee-Taek;Park, Youn-Shik;Jang, Won-Seok;Park, Jun-Ho;Lim, Kyoung-Jae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.143-146
    • /
    • 2008
  • With unexpected torrential rainfall, flash flooding is occurring frequently and its impacts are tremendous. Thus proper natural disaster management plans are required. The disaster management system of the Bimodal tram utilizes the SWMM as a core engine to simulate runoff and urban sewer networks for flooding simulation. To develop the efficient Bimodal tram disaster management system, very detailed subcatchment boundaries and flow networks have to be developed in a GIS data format. Thus the objective of this study is to develop ArcView GIS based module (AV2SWMM) for easy preparation of model input for the tram disaster management system. With the AV2SWMM module, very detailed subcatchment boundaries and flow networks can be developed for accurate simulation of flash flooding at the study site, which were not/hardly possible with SWMM 5.0 interface. The AV2SWMM can be used in developing accurate model input for other regions where the Bimodal tram system is expected to be introduced.

  • PDF

Prediction of Lane Flooding on a Model Site for Rainfall Safety of Rubber-tired Tram (바이모달 트램 모의운행지역에서의 강우에 대한 노선침수 예측)

  • Park, Young-Kon;Yoon, Hee-Taek;Lim, Kyoung-Jae;Kim, Jong-Gun;Park, Youn-Shik;Kim, Tae-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1209-1212
    • /
    • 2007
  • Urban flooding with surcharges in sewer system was investigated because of unexpected torrential storm events these days, causing significant amounts of human and economic damages. Although there are limitations in forecasting and preventing natural disasters, integrated urban flooding management system using the SWMM(Storm Water Management Model) engine and Web technology will be an effective tool in securing safety in operating rubber-tired transportation system. In this study, the study area, located in Chuncheon, Kangwon province, was selected to evaluate the applicability of the SWMM model in forecasting urban flooding due to surcharges in sewer system The catchment are 21.10 ha in size and the average slope is 2% in lower flat areas. Information of subcatchment, conjunctions, and conduits was used as the SWMM interface to model surface runoff generation, water distribution through the sewer system and amount of water overflow. Through this study, the applicability of the SWMM for urban flooding forecasting was investigated and probability distribution of storm events module was developed to facilitate urban flooding prediction with forecasted rainfall amounts. In addition, this result can be used to the establishment of disaster management system for rainfall safety of rubber-tired tram in the future.

  • PDF

Research of Runoff Management in Urban Area using Genetic Algorithm (유전자알고리즘을 이용한 도시화 유역에서의 유출 관리 방안 연구)

  • Lee, Beum-Hee
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.321-331
    • /
    • 2006
  • Recently, runoff characteristics of urban area are changing because of the increase of impervious area by rapidly increasing of population and industrialization, urbanization. It needs to extract the accurate topologic and hydrologic parameters of watershed in order to manage water resource efficiently. Thus, this study developed more precise input data and more improved parameter estimating procedures using GIS(Geographic Information System) and GA(Genetic Algorithm). For these purposes, XP-SWMM (EXPert-Storm Water Management Model) was used to simulate the urban runoff. The model was applied to An-Yang stream basin that is a typical Korean urban stream basin with several tributaries. The rules for parameter estimation were composed and applied based on quantity parameters that are investigated through the sensitivity analysis. GA algorithm is composed of these rules and facts. The conditions of urban flows are simulated using the rainfall-runoff data of the study area. The data of area, slope, width of each subcatchment and length, slope of each stream reach were acquired from topographic maps, and imperviousness rate, land use types, infiltration capacities of each subcatchment from land use maps, soil maps using GIS. Also we gave the management scheme of urbanization runoff using XP-SWMM. The parameters are estimated by GA from sensitivity analysis which is performed to analyze the runoff parameters.

  • PDF

Effects of porous pavement on runoff reduction in Boguang subcatchment (투수성 포장도로 도입을 통한 보광배수유역 유출량 저감효과 검토)

  • Jung, Jiyun;Lee, Gunyoung;Ryu, Jaena;Ohe, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.251-259
    • /
    • 2013
  • Among various Green Infrastructure measures for urban stormwater management, effects of porous pavement were quantitatively examined in terms of hydrological cycle. Different scenarios for porous pavement were introduced on a SWMM model and the effects were compared and analysed using discharge hydrographs. Two types of pavements having different runoff coefficients (0.05 & 0.5) were introduced to cover different ratio of entire road areas (100 %, 77.5 % and 40.4 %) and these made up in total 6 different scenarios. Total runoff volume was reduced and peak flow was significantly decreased by applying the porous pavement. The highest reduction for total runoff was shown from S-6(covering area: 100 %, runoff coefficient: 0.05) as 19 % followed by S-5(covering area: 77.5 %, runoff coefficient: 0.05, 16 %), while that of S-2(covering area: 40.4 %, runoff coefficient: 0.05) and S-1(covering area: 40.4 %, runoff coefficient: 0.5) were the lowest with 8 % and 5 %. This proved that the application of porous pavement would improve urban hydrological cycle.

Multi-objective optimization of stormwater pipe networks and on-line stormwater treatment devices in an ultra-urban setting

  • Kim, Jin Hwi;Lee, Dong Hoon;Kang, Joo-Hyon
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • In a highly urbanized area, land availability is limited for the installation of space consuming stormwater systems for best management practices (BMPs), leading to the consideration of underground stormwater treatment devices connected to the stormwater pipe system. The configuration of a stormwater pipe network determines the hydrological and pollutant transport characteristics of the stormwater discharged through the pipe network, and thus should be an important design consideration for effective management of stormwater quantity and quality. This article presents a multi-objective optimization approach for designing a stormwater pipe network with on-line stormwater treatment devices to achieve an optimal trade-off between the total installation cost and the annual removal efficiency of total suspended solids (TSS). The Non-dominated Sorted Genetic Algorithm-II (NSGA-II) was adapted to solve the multi-objective optimization problem. The study site used to demonstrate the developed approach was a commercial area that has an existing pipe network with eight outfalls into an adjacent stream in Yongin City, South Korea. The stormwater management model (SWMM) was calibrated based on the data obtained from a subcatchment within the study area and was further used to simulate the flow rates and TSS discharge rates through a given pipe network for the entire study area. In the simulation, an underground stormwater treatment device was assumed to be installed at each outfall and sized proportional to the average flow rate at the outfall. The total installation cost for the pipes and underground devices was estimated based on empirical formulas using the flow rates and TSS discharge rates simulated by the SWMM. In the demonstration example, the installation cost could be reduced by up to 9% while the annual TSS removal efficiency could be increased by 4% compared to the original pipe network configuration. The annual TSS removal efficiency was relatively insensitive to the total installation cost in the Pareto-optimal solutions of the pipe network design. The results suggested that the installation cost of the pipes and stormwater treatment devices can be substantially reduced without significantly compromising the pollutant removal efficiency when the pipe network is optimally designed.