• Title/Summary/Keyword: urban deep excavation

Search Result 66, Processing Time 0.024 seconds

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

A study on the selection of optimal cross section according to the ventilation system in TBM road tunnels (TBM 도로터널의 환기방식에 따른 최적단면 선정에 관한 연구)

  • Lee, Ho-Keun;Kang, Hyun-Wook;Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.135-148
    • /
    • 2013
  • Recently, road tunnels have become longer and the plans for long and deep road tunnel have been underway in urban areas. These long and deep tunnel excavations include NATM and TBM. Shield TBM is applied to around 80% of traffic tunnels in Europe, and approximately 30% of them in other developed countries. However, as much of equipment is imported from foreign countries at high prices and distribution rate of TBM tunnel is considerably low in Korea, NATM excavation method is commonly used. To increase TBM tunnel, it is necessary to do assure economic feasibility with the supply-demand of TBM equipment. For this, the selection of standardized TBM diameter is urgently needed. Therefore, the study aims to estimate the standardized optimum section properties of TBM by examining TBM excavation cross section utilization depending on the volume of traffic, the number of lane and its cross-section type(single or double deck), and ventilation system.

Improvement of SOC Structure Automated Measurement Analysis Method through Probability Analysis of Time-History Data (시계열 데이터의 확률분석을 통한 SOC 구조물 자동화계측 분석기법 개선)

  • Jung-Youl Choi;Dae-Hui Ahn;Jae-Min Han;Jee-Seung Chung;Jung-Ho Kim;Bong-Chul Joo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.679-684
    • /
    • 2023
  • Currently, large-scale and deep-depth excavation construction is being carried out in the vicinity of structures due to overdensity in urban areas in Korea. It is very important to secure the safety of retaining structures and underground structures for adjacent excavation work in urban areas. The safety of facilities is managed by introducing an automated measurement system. However, the utilization of the results of the automated measurement system is very low. Conventional evaluation techniques rely only on the maximum value of the measured data, and can overestimate abnormal behavior. In this study, we intend to improve the analysis technique for the automation measurement results. In order to identify abnormal behavior of facilities, a time-series analysis method for automated measurement data was presented. By applying a probability statistical analysis technique to a vast amount of data, highly reliable results were derived. In this study, the analysis method and evaluation method that can process the vast amount of data of facilities have been improved.

Safety Evaluation of Subway Tunnel Structures According to Adjacent Excavation (인접굴착공사에 따른 지하철 터널 구조물 안전성 평가)

  • Jung-Youl Choi;Dae-Hui Ahn;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.559-563
    • /
    • 2024
  • Currently, in Korea, large-scale, deep excavations are being carried out adjacent to structures due to overcrowding in urban areas. for adjacent excavations in urban areas, it is very important to ensure the safety of earth retaining structures and underground structures. accordingly, an automated measurement system is being introduced to manage the safety of subway tunnel structures. however, the utilization of automated measurement system results is very low. existing evaluation techniques rely only on the maximum value of measured data, which can overestimate abnormal behavior. accordingly, in this study, a vast amount of automated measurement data was analyzed using the Gaussian probability density function, a technique that can quantitatively evaluate. highly reliable results were derived by applying probabilistic statistical analysis methods to a vast amount of data. therefore, in this study, the safety evaluation of subway tunnel structures due to adjacent excavation work was performed using a technique that can process a large amount of data.

Development of Real Time Monitoring Program Using Geostatistics and GIS (GIS 및 지구통계학을 이용한 실시간 통합계측관리 프로그램 개발)

  • Han, Byung-Won;Park, Jae-Sung;Lee, Dae-Hyung;Lee, Gye-Choon;Kim, Sung-Wook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1046-1053
    • /
    • 2006
  • In the large scale recent reclaiming works performed within the wide spatial boundary, evaluation of long-term consolidation settlement and residual settlement of the whole construction area is sometimes made with the results of the limited ground investigation and measurement. Then the reliability of evaluation has limitations due to the spatial uncertainty. Additionally, in case of large scale deep excavation works such as urban subway construction, there are a lot of hazardous elements to threaten the safety of underground pipes or adjacent structures. Therefore it is necessary to introduce a damage prediction system of adjacent structures and others. For the more accurate analysis of monitoring information in the wide spatial boundary works and large scale urban deep excavations, it is necessary to perform statistical and spatial analysis considering the geographical spatial effect of ground and monitoring information in stead of using diagrammatization method based on a time-series data expression that is traditionally used. And also it is necessary that enormous ground information and measurement data, digital maps are accumulated in a database, and they are controlled in a integrating system. On the abovementioned point of view, we developed Geomonitor 2.0, an Internet based real time monitoring program with a new concept by adding GIS and geo-statistical analysis method to the existing real time integrated measurement system that is already developed and under useful use. The new program enables the spatial analysis and database of monitoring data and ground information, and helps the construction- related persons make a quick and accurate decision for the economical and safe construction.

  • PDF

A Study for Safety Management on the Basis of Lateral Displacement Rates of Anchored In-situ Walls by Collapse Case Histories (붕괴 사례를 통한 앵커지지 가설흙막이벽체의 수평변위속도에 의한 안전관리 연구)

  • Chung, Dae-Seouk;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.367-378
    • /
    • 2018
  • Purpose: The objective of this study is to present a reasonable safety management of the anchored in-situ wall systems constructed in the ground conditions consisting of multi-layered soils underlain by bedrocks in the urban area of Korea. Method: Field measurements collected from collapse case histories with deep excavations were analyzed for the safety management of the wall systems supported by the earth anchors in terms of lateral displacement rates. Results: The average maximum lateral displacement rate in a collapsed zone of the in-situ wall significantly increased upon the completion of the excavation. Particularly, the collapse of the in-situ wall system due to the sliding occurring along the discontinuities of the rock produced a considerably large lateral displacement rate over a relatively short period. Conclusion: For predicting and preventing the collapse of the wall system during or after the excavation work, the utilization of the safety management criteria of the in-situ wall system by the lateral displacement rate was found to be much more reasonable in judging the safety of earthworks than the application of the quantitative management criteria which have been commonly used in the excavation sites.

Modeling of a rockburst related to anomalously low friction effects in great depth

  • Zhan, J.W.;Jin, G.X.;Xu, C.S.;Yang, H.Q.;Liu, J.F.;Zhang, X.D.
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.113-131
    • /
    • 2022
  • A rockburst is a common disaster in deep-tunnel excavation engineering, especially for high-geostress areas. An anomalously low friction effect is one of the most important inducements of rockbursts. To elucidate the correlation between an anomalously low friction effect and a rockburst, we establish a two-dimensional prediction model that considers the discontinuous structure of a rock mass. The degree of freedom of the rotation angle is introduced, thus the motion equations of the blocks under the influence of a transient disturbing force are acquired according to the interactions of the blocks. Based on the two-dimensional discontinuous block model of deep rock mass, a rockburst prediction model is established, and the initiation process of ultra-low friction rockburst is analyzed. In addition, the intensity of a rockburst, including the location, depth, area, and velocity of ejection fragments, can be determined quantitatively using the proposed prediction model. Then, through a specific example, the effects of geomechanical parameters such as the different principal stress ratios, the material properties, a dip of principal stress on the occurrence form and range of rockburst are analyzed. The results indicate that under dynamic disturbance, stress variation on the structural surface in a deep rock mass may directly give rise to a rockburst. The formation of rockburst is characterized by three stages: the appearance of cracks that result from the tension or compression failure of the deformation block, the transformation of strain energy of rock blocks to kinetic energy, and the ejection of some of the free blocks from the surrounding rock mass. Finally, the two-dimensional rockburst prediction model is applied to the construction drainage tunnel project of Jinping II hydropower station. Through the comparison with the field measured rockburst data and UDEC simulation results, it shows that the model in this paper is in good agreement with the actual working conditions, which verifies the accuracy of the model in this paper.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

Behavior of braced wall due to distance between tunnel and wall in excavation of braced wall nearby tunnel (터널에 인접한 흙막이굴착 시 터널 이격거리에 따른 거동특성)

  • Ahn, Sung Joo;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.657-669
    • /
    • 2018
  • In recent years, the development of complex urban areas has become saturated and much attention has been focused on the development of underground space, and deep excavation is frequently performed in order to increase the utilization of underground space due to the enlargement of buildings and the high rise of buildings. Therefore, in this study, we tried to understand the behavior of the braced wall and the behavior of the tunnel adjacent to the wall according to the stiffness of the wall and the distance between the tunnel and wall. As a result of the study, the deformation of the braced wall tended to decrease with increasing the stiffness of the wall, and the axial force acting on the struts was also different according to the stiffness of braced wall. When the stiffness of the braced wall is small (2 mm), the point at which the axial force of the braces maximizes is near 0.3H of the wall. When the stiffness of the braced wall is large (5 mm), the axial force is maximum at around 0.7H of the wall. Also, the tunnel convergence occurred more clearly when the separation distance from the braced wall was closer, the stiffness of the wall was smaller, and the tunnel convergence was concentrated to the lower right part. The ground settlement due to the excavation of the ground tended to decrease as the distance between tunnel and braced wall was closer to that of the tunnel, which is considered to be influenced by the stiffness of the tunnel.

A Study on Machine Learning-Based Real-Time Automated Measurement Data Analysis Techniques (머신러닝 기반의 실시간 자동화계측 데이터 분석 기법 연구)

  • Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung;Jung-Ho Kim;Sung-Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.685-690
    • /
    • 2023
  • It was analyzed that the volume of deep excavation works adjacent to existing underground structures is increasing according to the population growth and density of cities. Currently, many underground structures and tracks are damaged by external factors, and the cause is analyzed based on the measurement results in the tunnel, and measurements are being made for post-processing, not for prevention. The purpose of this study is to analyze the effect on the deformation of the structure due to the excavation work adjacent to the urban railway track in use. In addition, the safety of structures is evaluated through machine learning techniques for displacement of structures before damage and destruction of underground structures and tracks due to external factors. As a result of the analysis, it was analyzed that the model suitable for predicting the structure management standard value time in the analyzed dataset was a polynomial regression machine. Since it may be limited to the data applied in this study, future research is needed to increase the diversity of structural conditions and the amount of data.