• Title/Summary/Keyword: upper and lower solutions

Search Result 175, Processing Time 0.022 seconds

MONOTONE METHOD FOR NONLINEAR HILFER FRACTIONAL REACTION-DIFFUSION EQUATIONS

  • Pandurang D. Kundgar;Jagdish A. Nanware;Gunvant A. Birajdar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.753-767
    • /
    • 2024
  • In this paper, we developed the existence and uniqueness results by monotone method for non-linear fractional reaction-diffusion equation together with initial and boundary conditions. In this text the Hilfer fractional derivative is used to denote the time fractional derivative. The employment of monotone method generates two sequences of minimal and maximal solutions which converges to lower and upper solutions respectively.

POSITIVE SOLUTIONS OF SINGULAR FOURTH-ORDER TWO POINT BOUNDARY VALUE PROBLEMS

  • Li, Jiemei
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1361-1370
    • /
    • 2009
  • In this paper, we consider singular fourth-order two point boundary value problems $u^{(4)}$ (t) = f(t, u), 0 < t < 1, u(0) = u(l) = u'(0) = u'(l) = 0, where $f:(0,1){\times}(0,+{\infty}){\rightarrow}[0,+{\infty})$ may be singular at t = 0, 1 and u = 0. By using the upper and lower solution method, we obtained the existence of positive solutions to the above boundary value problems. An example is also given to illustrate the obtained theorems.

  • PDF

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE GENERALIZED MHD AND HALL-MHD SYSTEMS IN ℝn

  • Zhu, Mingxuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.735-747
    • /
    • 2018
  • This paper deals with the asymptotic behavior of solutions to the generalized MHD and Hall-MHD systems. Firstly, the upper bound for the generalized MHD and Hall-MHD systems is investigated in $L^2$ space. Then, the effect of the Hall term is analyzed. Finally, we optimize the upper bound of decay and obtain their algebraic lower bound for the generalized MHD system by using Fourier splitting method.

STUDIES ON MONOTONE ITERATIVE TECHNIQUE FOR NONLINEAR SYSTEM OF INITIAL VALUE PROBLEMS

  • Nanware, J.A.;Gadsing, M.N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.53-67
    • /
    • 2022
  • Nonlinear system of initial value problems involving R-L fractional derivative is studied. Monotone iterative technique coupled with lower and upper solutions is developed for the problem. It is successfully applied to study qualitative properties of solutions of nonlinear system of initial value problem when the function on the right hand side is nondecreasing.

Upper and Lower Bound Solutions for Pile-Soil-Tunnel Interaction (한계해석법에 의한 파일-지반-터널 상호작용 해석)

  • Lee Yong-Joo;Shin Jong-Ho
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.77-86
    • /
    • 2005
  • In urban areas, new tunnel construction work is often taking place adjacent to existing piled foundations. In this case, careful assessment for the pile-soil-tunnel interaction is required. However, research on this topic has not been much reported, and currently only limited information is available. In this study, the complex pile-soil-tunnel interaction is investigated using the upper and lower bound methods based on kinematically possible failure mechanism and statically admissible stress field respectively. It is believed that the limit theorem is useful in understanding the complicated interaction behaviour mechanism and applicable to the pile-soil-tunnel interaction problem. The results are compared with numerical analysis. The material deformation patterns and strain data from the FE output are shown to compare well with the equivalent physical model tests. Admissible stress fields and the failure mechanisms are presented and used to develop upper and lower bound solutions to assess minimum support pressures within the tunnel.

  • PDF

TRAVELING WAVE SOLUTIONS IN NONLOCAL DISPERSAL MODELS WITH NONLOCAL DELAYS

  • Pan, Shuxia
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.703-719
    • /
    • 2014
  • This paper is concerned with the traveling wave solutions of nonlocal dispersal models with nonlocal delays. The existence of traveling wave solutions is investigated by the upper and lower solutions, and the asymptotic behavior of traveling wave solutions is studied by the idea of contracting rectangles. To illustrate these results, a delayed competition model is considered by presenting the existence and nonexistence of traveling wave solutions, which completes and improves some known results. In particular, our conclusions can deal with the traveling wave solutions of evolutionary systems which admit large time delays reflecting intraspecific competition in population dynamics and leading to the failure of comparison principle in literature.

EXISTENCE AND UNIQUENESS OF A SOLUTION FOR FIRST ORDER NONLINEAR LIOUVILLE-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

  • Nanware, J.A.;Gadsing, Madhuri N.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1011-1020
    • /
    • 2021
  • In this paper, first order nonlinear Liouville-Caputo fractional differential equations is studied. The existence and uniqueness of a solution are investigated by using Krasnoselskii and Banach fixed point theorems and the method of lower and upper solutions. Finally, an example is given to illustrate our results.

POSITIVE PERIODIC SOLUTIONS OF IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS

  • LIU YUJI;XIA JIANYE;GE WEIGAO
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.261-280
    • /
    • 2005
  • We study the existence and nonexistence of positive periodic solutions of a non-autonomous functional differential equation with impulses. The equations we study may be of delay, advance or mixed type functional differential equations and the impulses may cause the existence of positive periodic solutions. The methods employed are fixed-point index theorem, Leray-Schauder degree, and upper and lower solutions. The results obtained are new, and some examples are given to illustrate our main results.