• Title/Summary/Keyword: upland cultivation

Search Result 259, Processing Time 0.026 seconds

Occurrence of Wilting Disease(Fusarium spp) according to Crop Rotation and Continuous Cropping of Sesame(Sesamun indicum) (참깨연작(連作) 및 윤작재배(輪作栽培)에 따른 시들음병(病)(Fusarium spp)의 발생상황(發生狀況))

  • Paik, Su-Bong;Do, Eun-Su;Yang, Jang-Seock;Han, Man-Jong
    • The Korean Journal of Mycology
    • /
    • v.16 no.4
    • /
    • pp.220-225
    • /
    • 1988
  • This study was carried out to investigate the effect on the system of crop rotation of sesame(Sesamum indicum L). The results of infected plant percentage and yield of sesame wilting disease, fluctuation of density of Fusarium oxysporum and Actinomycetes, and their pathogenicity test on Fusarium spp isolated from sesame cultural soil were investigated. Density of F. oxysporum was the highest in a sesame continuous cropping soil but that of Actinomycetes was the lowest in that soil. And that of F. oxysporum and Actinomycetes according to investigation date was the highest at June. 30 and July. 30, respectively. Their pathogenicity of F. oxysporum and F. solani isolated from sesame cultural soil to sesame, peanut and green gram were recognized to all isolates except one isolate among F. oxysporum 8 isolates and one isolate to sesame, 2 isolates to peanut and all isolates to green gram among F. solani 4 isolates. F. oxysporum density and infected plant of wilting disease were increased as a result of replanted cultivation of sesame, and yield of that was prominantly reduced. Relation between density of F. oxysporum in cultural soil and infected plant percentage showed positive correlation and yield index highly negative. There was little difference between sesame-upland rice and sesame-peanut in the system of crop rotation.

  • PDF

The Development of Estimation Model (AFKAE0.5) for Water Balance and Soil Water Content Using Daily Weather Data (일별 기상자료를 이용한 농경지 물 수지 및 토양수분 예측모형 (AFKAE0.5) 개발)

  • Seo, Myung-Chul;Hur, Seung-Oh;Sonn, Yeon-Kyu;Cho, Hyeon-Suk;Jeon, Weon-Tai;Kim, Min-Kyeong;Kim, Min-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1203-1210
    • /
    • 2012
  • As the area of upland crops increase, it is become more important for farmers to understand status of soil water at their own fields due to key role of proper irrigation. In order to estimate daily water balance and soil water content with simple weather data and irrigation records, we have developed the model for estimating water balance and soil water content, called AFKAE0.5, and verified its simulated results comparing with daily change of soil water content observed by soil profile moisture sensors. AFKAE0.5 has two hypothesis before establishing its system. The first is the soil in the model has 300 mm in depth with soil texture. And the second is to simplify water movement between the subjected soil and beneath soil dividing 3 categories which is defined by soil water potential. AFKAE0.5 characterized with determining the amount of upward and downward water between the subjected soil and beneath soil. As a result of simulation of AFKAE0.5 at Gongju region with red pepper cultivation in 2005, the water balance with input minus output is recorded as - 88 mm. the amount of input water as precipitation, irrigation, and upward water is annually 1,043, 0, and 207 mm, on the other, output as evapotranspiration, run-off, and percolation is 831, 309, and 161 mm, respectively.

Status and Changes in Chemical Properties of Paddy Soil in Korea (우리나라 논토양의 화학성 현황과 변동)

  • Kang, Seong-Soo;Roh, Ahn-Sung;Choi, Seung-Chul;Kim, Young-Sang;Kim, Hyun-Ju;Choi, Moon-Tae;Ahn, Byung-Koo;Kim, Hyun-Woo;Kim, Hee-Kwon;Park, Jun-Hong;Lee, Young-Han;Yang, Sang-Ho;Ryu, Jong-Soo;Jang, Young-Sun;Kim, Myeong-Sook;Sonn, Yeon-Kyu;Lee, Chang-Hoon;Ha, Sang-Gun;Lee, Deok-Bae;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.968-972
    • /
    • 2012
  • Soil chemical properties of agricultural soils in Korea were investigated at four-years interval in order of paddy, plastic film house, upland, and orchard soils since 1999. Paddy soil samples were taken from the surface 15 cm at 4,047, 2,010, 2,110 and 2,110 sites in all provinces of South Korea in 1999, 2003, 2007 and 2010, respectively. Soil chemical properties in Korea except Jeju province were measured. Soil pH and exchangeable calcium and available silicate contents increased with increasing the application rate of silicate fertilizer and with decreasing its application interval. Soil organic matter content also increased from $22.0g\;kg^{-1}$ in 1999 to $26.0g\;kg^{-1}$ in 2011. Average concentration of available phosphate in 2011 was higher than the upper limit of its optimal range for rice cultivation. However, exchangeable magnesium and available silicate contents were below the lower limit of their optimal ranges, which were 80% and 92% of them, respectively.

Effect of Mixtures with Lignite and Amino Acid Solution on the Growth of Rice Plant, Chinese Cabbage and Red Pepper, and the Chemical Properties of Soil (갈탄과 아미노산액 혼합제 시용이 벼, 배추와 고추의 생육 및 토양의 화학적 특성에 미치는 영향)

  • Han, Seong-Soo;Yoo, Ki-Yong;Park, Min-Su;Lee, Young-Il;Baek, Seung-Hwa
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.93-101
    • /
    • 2010
  • For the study of possibility of practical use as an organic farm materials of the mixtures with lignite and amino acid solution, this experiment was carried out to investigate the effects of the mixtures on the growth and the yield of rice plant, chinese cabbage, and red pepper, and the effects of the mixtures on chemical properties of soil. Also, when the mixtures of the lignite plus amino acid solution and the chemical fertilizer were applied to these three crop cultivation area, authors want to know how can the loss in quantity of chemical fertilizer affects the growth and the yield of these crops. As the results, growth of rice plant applied with the mixtures of lignite and amino acid solution was better than that applied with the recommended rate of chemical fertilizer. Especially, the growth of rice plant appeared to be good at the treatment of 150 kg/ha of the mixed lignite with amino acid solution and at that of its mixtures and standard fertilization. Growth of chinese cabbage and red pepper was good at the application of 600 kg/ha of the mixed lignite with amino acid solution and at that of its mixtures and standard fertilization. Yield of rice and chinese cabbage was good at the treatment of 150 kg/ha of the mixed lignite with amino acid solution and at that of its mixtures and standard fertilization, and yield of red pepper was good at the application of 600 kg/ha of the mixed lignite with amino acid solution and at that of its mixtures and standard fertilization. The organic matter content increased and while the exchangeable cation decreased when the lignite mixed with amino acid solution and the loss in quantity of chemical fertilizer applied at paddy field. Incase of these treatments, pH and available phosphorus increase at upland field, but did not change at paddy field.

Volatilization of Sprayed Pesticides in Greenhouse using a Lysimeter (라이시미터를 이용한 시설하우스 내에 살포한 농약의 휘산 양상)

  • Kim, Danbi;Kim, Taek-Kyum;Kwon, HyeYong;Hong, Su-Myeong;Park, Byung-Jun;Lim, Sung-Jin;Lee, Hyo-Sub;Moon, Byeong-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.305-311
    • /
    • 2016
  • In cultivation environment, various pesticides are used and some of them could be volatilized into the air. This could affect farmer's health and also cause environmental pollution. This study was carried out to investigate the volatilization of pesticides, and use the reference data for preventing farmer's pesticide intoxication and securing worker safety. The experiment was conducted in a greenhouse using a lysimeter which was of $1m^2$ area and 1.5 m depth filled with upland soil. The pesticides treated in lysimeter soil were ethoprophos (5.0% GR), diazinon (34.0% EC), alachlor (43.7% EC), metolachlor (40.0% EC), chlorpyrifos (2.0% GR), pendimethalin (31.7% EC), carbaryl (50.0% WP), napropamide (50% WP), tebuconazole (25.0% WP) and imidacloprid (2.0% GR). Each pesticide was treated at a concentration of 770.5 mg based on A.I (%). The recovery of pesticide ranged from 77.4 to 99.3%. The volatilized pesticides in air were collected by personal air sampler with PUF tube at 4 l/min flow rate. In addition, temperature and humidity were measured. The collected samples were extracted using acetone in a soxhlet apparatus for 8 hours. The extracted pesticides were resoluted with acetonitrile and diluted 5 times. It was analyzed with LC-MS/MS. For 720 hours experiment, the largest vaporization amount of each pesticide in air was ethoprophos $15.24{\mu}g/m^3$, diazinon $5.14{\mu}g/m^3$, pendimethalin $2.70{\mu}g/m^3$, chlorpyrifos $1.76{\mu}g/m^3$, alachlor $1.40{\mu}g/m^3$, metolachlor $1.12{\mu}g/m^3$, carbaryl $0.27{\mu}g/m^3$, napropamide $0.22{\mu}g/m^3$, tebuconazole $0.11{\mu}g/m^3$ and imidacloprid $0.05{\mu}g/m^3$. The R value (coefficient of correlation) between volatilization and vapor pressure of pesticides is higher than 0.99. Therefore, there is high correlation between volatilization and vapor pressure of pesticides.

Comparison of Application Effects among Three Products of Granular Fused Magnesium Phosphate on Soybean Cultivation (대두(大豆)에 대한 입상(粒狀), 용성인비(熔成燐肥) 제품간(製品間)의 비효(肥效) 비교(比較))

  • Lim, Dong-Kyu;Kim, Seok-Cheol;Song, In-Kwan;Moon, Jae-Hyon;Choi, Du-Hoi;Kang, Hang-Won;Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.3
    • /
    • pp.255-263
    • /
    • 1996
  • This study was conducted to evaluate the application effects of three different granular fused magnesium phosphate products on soybean in a volcanic ash upland soil(Namweon series) of Cheju island. They were two domestic products(Kyunggi Chemical Industrial Co., LTD, Pungnong Biryo Industrial Co., LTD) and an imported Chinese product that were manufactured from different added materials. A powder fused magnesium phosphate. a single superphosphate(water soluble phosphatic fertilizer) and a fused superphosphate(mixed water soluble phosphate and 2% citric acid soluble phosphate) were presented as check fertilizers. Yield of soybean was the highest in the Pungnong product of granular fused magnesium phosphate. the next was the Chinese product imported and the Kyunggi product was the lowest but there was no statistical significance among the three granular products of fused magnesium phosphate. There was no clear tendency between yield and yield components of soybean plant however, the effects on the number of mainstem nodes, number of branches nodes and number of pods per plant were observed in the increased yield treaments. Phosphate concentration in stems and pods of soybean plant at harvesting stage was higher than those in stems of soybean plant during growing period. Uptake amounts and recovery rates of phosphate in stems and pods of soybean plant at harvesting stage were similar with the yield increasing tendency on soybean. In the changes of soil pH at different periods, the application of phosphatic fertilizers was increased soil pH. Soil pH in Chinese product was higher than domestic products, but it was similar to single superphosphate. The available silicate concentrations of soil were higher in the plot of Pungnong product than Chinese product.

  • PDF

Study on Vinyl Coating Cultivation of Potatoes under Low Temperature Conditions (조기 재배시 감자의 비닐 피복 재배 연구)

  • Choi, Kwan Soo;Jung, Gun Ho
    • Korean Journal of Plant Resources
    • /
    • v.30 no.5
    • /
    • pp.556-564
    • /
    • 2017
  • Appropriate soil temperature and early planting of potato is very important for the successful potato-soybean cropping system in central region of South Korea. This experiment was carried out to determine the effect of mulching materials on the growth and yield of potato (Solanum tuberosum L.). Five different mulch treatments were had been applied on an upland soil as follows ; no mulch (NM), transparent film (TF), transparent film + additional transparent film (TF + ATF), black film (BF), and black film + additional transparent film (ATF). In the period of sowing time to removing additional films, mean soil temperature of the treatments was in the order of TF+ATF > TF > BR+ATF > BF as $20.3^{\circ}C$ > $18.5^{\circ}C$ > $16.1^{\circ}C$ > $15.4^{\circ}C$, respectively and that of NM was $13.8^{\circ}C$. The accumulated soil temperature was TF > NM > BF during the removing additional films to earthing at inter-tillage. On the changes in the soil temperature during a whole day, the temperature in the BF was lower than NM during around 18:00 PM to 12:00 NM, while NM was higher than BF in the time period of 10:00AM to 21:00PM. The sequence of potato sprout emergence was 15 > 18 > 20 > 22 days of TF+ATF, TF, BF+ATF, and BF, respectively and that of NM was 24 days. Comparing to the NM, potato sprout emergence was observed on the TF+ATF treated plot as early as 9 days. At 10 days before harvest, the significant difference in the tuber dry weight had been observed and the sequence tuber weight was in the order of TF > TF+ATF > BF+ATF > BF > NM. The potato yields of TF, TF+ATF, and BF+ATF were increased of 40.7, 37.3, and 22% as compared to NM ($2,805kg\;10a^{-1}$), but almost same yield in the BF. The differences of tuber dry weight and potato yields was co-related with the temperature rise of soil by the application of mulching materials on soil. Based on these results, application of mulching film had been very effective to increase the tuber size and the yield of potato by the temperature rise during seedling stage of potato. Transparent mulching was better than black mulching especially for the emergence of sprout of potato in relation to minimizing cooling injury.

Perspective of breaking stagnation of soybean yield under monsoon climate

  • Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.8-9
    • /
    • 2017
  • Soybean yield has been low and unstable in Japan and other areas in East Asia, despite long history of cultivation. This is contrasting with consistent increase of yield in North and South America. This presentation tries to describe perspective of breaking stagnation of soybean yield in East Asia, considering the factors of the different yields between regions. Large amount of rainfall with occasional dry-spell in the summer is a nature of monsoon climate and as frequently stated excess water is the factor of low and unstable soybean yield. For example, there exists a great deal of field-to-field variation in yield of 'Tanbaguro' soybean, which is reputed for high market value and thus cultivated intensively and this results in low average yield. According to our field survey, a major portion of yield variation occurs in early growth period. Soybean production on drained paddy fields is also vulnerable to drought stress after flowering. An analysis at the above study site demonstrated a substantial field-to-field variation of canopy transpiration activity in the mid-summer, but the variation of pod-set was not as large as that of early growth. As frequently mentioned by the contest winners of good practice farming, avoidance of excess water problem in the early growth period is of greatest importance. A series of technological development took place in Japan in crop management for stable crop establishment and growth, that includes seed-bed preparation with ridge and/or chisel ploughing, adjustment of seed moisture content, seed treatment with mancozeb+metalaxyl and the water table control system, FOEAS. A unique success is seen in the tidal swamp area in South Sumatra with the Saturated Soil Culture (SSC), which is for managing acidity problem of pyrite soils. In 2016, an average yield of $2.4tha^{-1}$ was recorded for a 450 ha area with SSC (Ghulamahdi 2017, personal communication). This is a sort of raised bed culture and thus the moisture condition is kept markedly stable during growth period. For genetic control, too, many attempts are on-going for better emergence and plant growth after emergence under excess water. There seems to exist two aspects of excess water resistance, one related to phytophthora resistance and the other with better growth under excess water. The improvement for the latter is particularly challenging and genomic approach is expected to be effectively utilized. The crop model simulation would estimate/evaluate the impact of environmental and genetic factors. But comprehensive crop models for soybean are mainly for cultivations on upland fields and crop response to excess water is not fully accounted for. A soybean model for production on drained paddy fields under monsoon climate is demanded to coordinate technological development under changing climate. We recently recognized that the yield potential of recent US cultivars is greater than that of Japanese cultivars and this also may be responsible for different yield trends. Cultivar comparisons proved that higher yields are associated with greater biomass production specifically during early seed filling, in which high and well sustained activity of leaf gas exchange is related. In fact, the leaf stomatal conductance is considered to have been improved during last a couple of decades in the USA through selections for high yield in several crop species. It is suspected that priority to product quality of soybean as food crop, especially large seed size in Japan, did not allow efficient improvement of productivity. We also recently found a substantial variation of yielding performance under an environment of Indonesia among divergent cultivars from tropical and temperate regions through in a part biomass productivity. Gas exchange activity again seems to be involved. Unlike in North America where transpiration adjustment is considered necessary to avoid terminal drought, under the monsoon climate with wet summer plants with higher activity of gas exchange than current level might be advantageous. In order to explore higher or better-adjusted canopy function, the methodological development is demanded for canopy-level evaluation of transpiration activity. The stagnation of soybean yield would be broken through controlling variable water environment and breeding efforts to improve the quality-oriented cultivars for stable and high yield.

  • PDF

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF

Evaluation of Legume Green Manure Crops for Spring-Sowing in the Central Regions of Korea (중부지역에서 이용 가능한 춘파용 두과 녹비작물 선발)

  • Cho, Hyeoun-Suk;Jeon, Weon-Tai;Seong, Ki-Yeung;Kim, Min-Tea;Lee, Jong-Ki;Kim, Chung-Guk;Jeong, Kwang-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.333-338
    • /
    • 2010
  • The use of green manure crop for sustainable agriculture can reduce the use of chemical fertilizer and herbicides, and the cultivation area of the green manure crop has gradually increased. However, there has been little information about appropriate use of spring-sown green manure crop in the central regions of Korea. This study was conducted to investigate the effect of different legume crops on application of sown green manure in spring. Each of the green manure crops including alfalfa, chinese milk vetch, crimson clover, crotalaria, hairy vetch, lupin, red clover and white clover was grown in upland soil of silt loam. The dry weight and C/N ratio of all crops increased throughout the growing period, while C/N ratio of all crops during growing period was lower than 25. The highest value of dry weight among the green manure crops was observed in crimson clover, followed by red clover, lupin, chinese milk vetch and alfalfa. Also, the highest value of contents of nitrogen, phosphous and potassium of green manure crops were observed in hairy vetch, alfalfa and crimson clover, respectively. And the values were 41.3, 4.3 and 35.9 g $kg^{-1}$, respectively. In terms of nitrogen yield, crimson clover that showed 71 kg N $ha^{-1}$ was the highest yield among the green manure crops, followed by chinese milk vetch of 51 kg $ha^{-1}$, red clover of 46 kg $ha^{-1}$, and hairy vetch of 41 kg $ha^{-1}$. These results suggest that crimson clover, chinese milk vetch, red clover, and hairy vetch could be a suitable green manure crop for spring sowing.