• Title/Summary/Keyword: unsteady effects

Search Result 436, Processing Time 0.022 seconds

Development of an Unsteady Aerodynamic Analysis Module for Rotor Comprehensive Analysis Code

  • Lee, Joon-Bae;Yee, Kwan-Jung;Oh, Se-Jong;Kim, Do-Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.23-33
    • /
    • 2009
  • The inherent aeromechanical complexity of a rotor system necessitated the comprehensive analysis code for helicopter rotor system. In the present study, an aerodynamic analysis module has been developed as a part of rotorcraft comprehensive program. Aerodynamic analysis module is largely classified into airload calculation routine and inflow analysis routine. For airload calculation, quasi-steady analysis model is employed based on the blade element method with the correction of unsteady aerodynamic effects. In order to take unsteady effects - body motion effects and dynamic stall - into account, aerodynamic coefficients are corrected by considering Leishman-Beddoes's unsteady model. Various inflow models and vortex wake models are implemented in the aerodynamic module to consider wake induced inflow. Specifically, linear inflow, dynamic inflow, prescribed wake and free wake model are integrated into the present module. The aerodynamic characteristics of each method are compared and validated against available experimental data such as Elliot's induced inflow distribution and sectional normal force coefficients of AH-1G. In order to validate unsteady aerodynamic model, 2-D unsteady model for NACA0012 airfoil is validated against aerodynamic coefficients of McAlister's experimental data.

The effects of axial spacing on the unsteady secondary and performance in one-stage axial turbine (1단 터빈에서 축간격 변화가 비정상 이차유동 및 성능에 미치는 영향)

  • Park Junyoung;Baek JeHyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.537-540
    • /
    • 2002
  • Flow through turbomachinery has a very complex structure and is intrinsically unsteady. Especially, recent design trend to turbomachinery with short axial spacing makes the flow extremely complex due to the interaction between stator and rotor. Therefore, it is very necessary to clearly understand the complex flow structure to obtain the high efficiency turbomachinery. So, in this paper, the effects of axial spacing on the unsteady secondary flow performance in the one stage turbine are investigated by three-dimensional unsteady flow analysis. The three-dimensional solver is parallelized using domain decomposition and Message Passing Interface(MPI) standard to overcome the limitation of memory and the CPU time in three-dimensional unsteady calculation. A sliding mesh interface approach has been implemented to exchange flow information between blade rows.

  • PDF

Effects of Rotor-Stator Blade Count Ratio on the Unsteady Aerodynamic Characteristics of a Cascade (동익과 정익의 블레이드 개수 비가 익렬의 비정상 공기역학적 특성에 미치는 영향에 대한 수치해석적 연구)

  • Kang D. J.;Jeon H. J.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.41-50
    • /
    • 2001
  • Effects of rotor-stator blade count ratio on the unsteady aerodynamic characteristics of a cascade was studied by using a Navier-Stokes code. Present Navier-Stokes code is a parallel code and works on a multi-cpu machine. It is based on the SIMPLE algorithm and uses QUICK scheme for convection terms and second order back difference for all temporal derivatives. Computations were carried out for two cases : case 1 is for 3 stator cascade passages subjected to two upstream wakes while case 2 is for 2 stator cascade passages subjected to three upstream wakes. Numerical solutions show that rotor-stator blade count ratio plays a significant role in the unsteady aerodynamic characteristics of the stator cascade. Case 2 shows smaller unsteady fluctuation than case 1, even if they show the same time averaged value. The smaller fluctuation of case 2 is believed due to strong interaction between unsteady vortices. The unsteady lift variation of case 2 is shown to have many high frequency fluctuations as more unsteady vortices travel around the cascade. The unsteady turbulent kinetic energy due to the upstream wake is also shown to decay faster through the cascade passage than in the free stream.

  • PDF

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

Effects of Upstream Wake Frequency on the Unsteady Boundary Layer Characteristics On a Downstream Blade (상류 후류의 발달 주파수가 하류 익형의 비정상 경계층 거동에 미치는 영향)

  • Bae Sang Su;Kang Dong Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.181-186
    • /
    • 1999
  • The effects of the frequency of upstream gust on the unsteady boundary characteristics on a downstream blade was simulated by using a Navier-Stokes code. The Navier-Stokes code is based on an unstructured finite volume method and uses a low Reynolds k-e turbulence model to close the momentum equations. The MIT flapping foil experiment set-up is used to simulate the interaction between the upstream wake and a blade. The frequency of the upstream wake is simulated by varying rate of pitching motion of the flapping airfoils. Three reduced frequencies. 3.62. 7.24. and 10.86. are simulated. As the frequency increases, the unsteady fluctuation on the surfaces of the downstream hydrofoil is shown to decrease while the upstream flapper wake has larger first harmonics of y-velocity component. The unsteady vortices are shown to interact with each other and. as a result. the upstream wake becomes undiscernible inside the inner layer. The turbulence kinetic energy shows a similar behavior. Limiting streamlines around the trailing edge of the flapper are shown to conform with the unsteady Kutta condition for a round trailing edge. while limiting streamlines around the trailing edge of the hydrofoil conforms with the unsteady Kutta condition for a sharp edge.

  • PDF

Unsteady Aerodynimic Analysis of an Aircraft Using a Frequency Domain 3-D Panel Method (주파수영역 3차원 패널법을 이용한 항공기의 비정상 공력해석)

  • 김창희;조진수;염찬홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1808-1817
    • /
    • 1994
  • Unsteady aerodynamic analysis of an aircraft is done using a frequency domian 3-D panel method. The method is based on an unsteady linear compressible lifting surface theory. The lifting surface is placed in a flight patch, and angle of attack and camber effects are implemented in upwash. Fuselage effects are not considered. The unsteady solutions of the code are validated by comparing with the solutions of a hybrid doublet lattice-doublet point method and a doublet point method for various wing configurations at subsonic and supersonic flow conditions. The calculated results of dynamic stability derivatives for aircraft are shown without comparision due to lack of available measured data or calculated results.

Rotordynamic Forces Due to Rotor Sealing Gap in Turbines (비대칭 터빈 로터 실에 기인한 축 가진력)

  • Kim Woo June;Song Bum Ho;Song Seung Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.545-548
    • /
    • 2002
  • Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations, direct damping and cross stiffness effects of aerodynamic forces determine rotordynamic stability. In axial turbines with eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed rotor offset. Thus, aerodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady aerodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine torque asymmetry are presented.

  • PDF

Unsteady Wall Pressure Fluctuation Generated from the Impinging Vortex on the Chamfered Forward Step (모따기된 전향계단에 부딪치는 와류에 의한 비정상 벽면압력 변동)

  • Ryu, Ki-Wahn;Lee, Jun-Shin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.312-317
    • /
    • 2001
  • Modifying effects of the rectangular forward step for suppressing the unsteady pressure fluctuation during interaction between the upstream vortical flow with the edge are studied numerically. The vortical flow is modeled by a point vortex, and the unsteady pressure coefficient is obtained from the velocity and the potential field. To investigate the effects of the edge shape the rectangular forward step is chamfered with various angles. Calculation show that the pressure peaks become decreased by increasing the vortex height as well as the chamfering angle. The pressure amplitudes are very sensitive to the change of the initial vortex height. From this study we can find out that the chamfered edge has two effects; the one is that it suppresses the pressure amplitude generated from the edge, and the other is that it decreases the time variation of unsteady pressure fluctuation. These modifying concepts can be applied to attenuate the self-sustained oscillation mechanism at the open cavity flow.

  • PDF

Numerical Analysis of the Unsteady Pressure fluctuation Generated from the Interaction between a Vortex Flow with a Forward Step (와류와 전향계단의 상호작용에 의한 비정상 벽면압력 변동의 수치해석)

  • 유기완;이준신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.213-220
    • /
    • 2002
  • Modifying effects of the rectangular forward step for suppressing the unsteady pressure fluctuation during interaction between the upstream vortical flow and the edge are studied numerically. The vertical flow is modeled by a point vortex, and the unsteady pressure coefficient is obtained from the velocity and the potential fields. To investigate the effects of the edge shape the rectangular forward step is chamfered wish various angles. Calculation shows that the pressure peaks become decreased by increasing the vortex height as well as the chamfering angle. The pressure amplitudes are very sensitive to the change of the initial vertex height and its strength. From this study we can find out that the chamfered edge has two effects; the one is that it suppresses the pressure amplitude generated from the edge, and the other is that it decreases the time variation of unsteady pressure fluctuation. These modifying concepts can be applied to attenuate the self-sustained oscillation mechanism at the open cavity flow.

Analysis of Unsteady Subsonic Flow Around a High Angle of Attack of the Oscillating Airfoil (진동하는 고 받음각 날개주위의 비정상 아음속 유동해석)

  • Moon, J.S.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.434-440
    • /
    • 2011
  • Oscillating airfoil haw been challenged for the dynamic stalls of airfoil am wind turbines at high angle of attach. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance am safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed for the oscillating airfoil at high angle of attack around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.2 and Reynolds number of $1.2{\times}10^4$. The lift, drag, pressure distribution, etc. are analyzed according to the pitching oscillation. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

  • PDF