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Rotordynamic Forces Due to Rotor Sealing Gap in Turbines
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Abstract

Turbines have been known to be particularly susceptible to flow-induced self-excited vibration. In such vibrations,
direct damping and cross stiffness effects of acrodynamic forces determine rotordynamic stability. In axial turbines with
eccentric shrouded rotors, the non-uniform sealing gap causes azimuthal non-uniformities in the seal gland pressure and
the turbine torque which destabilize the rotor system. Previously, research efforts focused solely on either the seal flow
or the unshrouded turbine passge flow. Recently, a model for flow in a turbine with a statically offset shrouded rotor has
been developed and some stiffness predictions have been obtained. The model couples the seal flow to the passage flow
and uses a small perturbation approach to determine nonaxiymmetric flow conditions. The model uses basic
conservation laws. Input parameters include aerodynamic parameters (e.g. flow coefficient, reaction, and work
coefficient); geometric parameters (e.g. sealing gap, depth of seal gland, seal pitch, annulus height); and a prescribed
rotor offset. Thus, acrodynamic stiffness predictions have been obtained. However, aerodynamic damping (i.e. unsteady
acrodynamic) effects caused by a whirling turbine has not yet been examined. Therefore, this paper presents a new
unsteady model to predict the unsteady flow field due to a whirling shrouded rotor in turbines. From unsteady
perturbations in velocity and pressure at various whirling frequencies, not only stiffness but also damping effects of
aerodynamic forces can be obtained. Furthermore, relative contributions of seal gland pressure asymmetry and turbine

torque asymmetry are presented.

1. Introduction

Over the years, various types of excitation mechanisms
that induce rotordynamic instability, e.g., labyrinth seals
and turbines, have been identified and analyzed (Den
Hartog (1956), Thomas (1958), Alford (1965), Enrich
(1976), Enrich and Childs (1984). A lumped parameter
model! for the flow inside a lanyrinth seal cavity, with inlet
and an exit, was initially developed by Kostyuk (1972).
Then, Iwatsubo (1980) extended the model to account for
the seal depth variation in an eccentric labyrinth seal by
adopting harmonic solution approach. Furthermore,
Millsaps (1994) experimentally and analytically examined
unsteady aerodynamic effects in a whirling labyrinth seal in
unshrouded turbine.

However less research has been conducted on the
aerodynamic effects of non-axisymmetric sealing gaps in
shrouded turbines. Therefore, this paper analyzes
rotordynamic damping effects due to aerodynamic forces in
an shouded turbine whith a whirling rotor. A new model
developed from combination of I[watsubo-Kostyuk seal
model and Song and Martinez-Sanchez turbine model. The
focus 1s on the physical mechanisms responsible for
aerodynamic damping forces.
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2. Model Description

This section describes the model of a single stage
shrouded axial turbine with a whirling rotor. The model is
an incompressible, meridional plane analysis, examing
rotordynamic characteristics due to aerodynamic forces.
The details of the model has been described in Song &
Song (2001), therefore only a brief description is presented
here.
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Figure 1. The components of labyrinth seal
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Figure 2. Control volume with the associated mass
fluxes.

To analyze the seal flow, Millsaps’ model (1994) has been
adopted. A seal is shown schematically in Figure 1. The
seal knife height is 4, and the seal’s length is /. The
sealing gap is O, and the cavity depth is 2+ . The
leakage flow rate is affected mainly by the sealing gap
O and the radial velocity of the leakage flow re-entering the
annulus at the rotor exit is determined by the axial gap a.

Using Bernoulli equation and continuity, the following
equations are obtained for seal leakage mass fraction,
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From the tangential momentum equation for the control
volume, the following equation for c; /c, can be
obtained. Since the two friction factors also depend on
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c, /¢,y an iterative scheme is employed to solve for
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The following equation for AR is obtained from Bernoulli
equation and axial momentum equation, where AR is area
ratio.
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Figure 3. Coordinate system used in the analysis

For the main stream, ( P> — D )/% pU? s equivalent to

the stagnation enthalpy drop, given by Euler’s turbine
equation, minus the kinetic energy gain.
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Then, the system of Egs. (1), (2), (3) and (4) are solved

simultaneously.

Figure 3 shows a turbine rotor simultaneously undergoing
rotation and a circular whirl. Forward whirling direction is
considered positive. The flow appears unsteady in inertial
frame and steady in whirling frame. The azimuthal location
the maximum tip gap is £2¢ + 77 radians from the inertial
X axis. In the inertial frame, the rotor’s whirling motion
introduces unsteadiness:

0 0
—|=—QR— 5
(at) dy ©)

The rotor offset, e, is assumed to be much smaller than the
annulus is given by

6§ =6 +Re[ éexp[ i(y/ R - Q1)) (6)

where O is mean rotor sealing gap and y is the distance
from the maximum tip gap in azimuthal direction.

From the perturbations in flow variables, lateral forces, or
rotordynamic excitation forces, the total nondimensionl
lateral forces in the whirling frame X’Y” can be predicted.
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Nondimensional damping and stiffness are extracted as
follows: A plot of nondimensional whirling frequency can
be curve fitted with a polynominal as follows:
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where a=Kxy and b= -Cxx. Similarly, nondimensional
direct force can be curve fitted as
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where d=Kxx and e= -Cxy.

3. Model Predictions

This section presents the predicted nondimensional
damping and stiffness for a selected turbine with a design
flow coefficient, reaction, and work coefficient of 0.58,
0.208, and 1.5 respectivly. This particular turbine has been
selected because they describe the turbine tested by Song
and Martinez-Sanchez (1997).

The design flow coefficient defined as the ratio of axial
velocity to turbine rotational speed at the design condition
and is representative of aerodynamic loading of turbine
rotor blades - a lower value means higher loading. The
focus is on the influence of design flow coefficient because
it is arguably the most important turbine design parameter.
Figure 4 shows the total nondimensional direct and cross

forces vs the rotor whirling frequency for various @ ,'s .

The cross force is more sensitive to the whirling frequency
than the direct force. As described in the model description
section, the lateral forces consist of pressure and torque
asymmetries. Figures 5 and 6 show the breakdown of
lateral forces in Figure 4 into those components. Pressure
asymmetry decreases with increasing whirling frequency,
but torque asymmetry remains almost same. Thus, the
pressure asymmetry has the dominant influence on
rotordynamic forces rather than the torque asymmetry.

Figure 7 illustrates the damping and stiffness coefficient
plotted versus @, . According to Martinez-Sanchez et al

(1995), the stability of a rotor system is determined by the
direct damping coefficient Cxx and cross stiffness
coefficient Kxy. The magnitudes of both Cxx and Kxy
decreses nonlinearly as P, increases, and that trend is

same to the unshrouded turbine. From a rotordynamic
perspective, positive Cxx and Kxy values indicate
stabilizing aerodynamic damping and destabilizing
aerodynamic stiffness force, respectively. Decresing @),

leads to the penalty of higher Kxy but also yields the
benefit of higher Cxx.

2...,.,.,...,...j

1
~— :
- :
—_— ; : 1
—_— i
0 : el ; .

Figure 4. Total direct and cross stiffness vs whirling
frequency for @, =0.42, 0.58, and 0.99.
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Figure 5. Direct and cross stiffness due to pressure
asymmetry vs whirling frequency for CI)D =0.42, 0.58,
and 0.99.
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Figure 6. Direct and cross stiffness due to torque
asymmetry vs whirling frequency for @, =042, 0.58,
and 0.99.
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Figure 7. Damping and stiffness vs design flow
coefficient.

4, Conclusion

For the first time, the aerodynamic stiffness and damping
forces caused by asymmetric tip clearance in an axial
shrouded turbine with a whirling rotor have been analyzed.
The focus is on the dynamic characteristics of the cross
force. Furthermore, the dependence of such forces on the
turbine design flow coefficient has been examined. The
following conclusions can be made,

1) As the whirl speed increases, the cross force decreases in
magnitude.

2) Pressure asymmetry has the dominant influence on
rotordynamic force.

3) Increasing the design turbine loading, or decreasing the
design turbine coefficient, leads to not only larger cross
stiffness but also larger direct damping force.
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