Analysis of Unsteady Subsonic Flow Around a High Angle of Attack of the Oscillating Airfoil

J.S. Moon and J.S. Kim

Oscillating airfoil have been challenged for the dynamic stalls of airfoil and wind turbines at high angle of attack. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed for the oscillating airfoil at high angle of attack around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.2 and Reynolds number of 1.2×10^5. The lift, drag, pressure distribution, etc. are analyzed according to the pitching oscillation. Unsteady velocity field, periodic vortex shedding, the unsteady pressure distribution, and the acoustic fields are analyzed. The effects of these unsteady characteristics in the aerodynamic coefficients are analyzed.

Keywords: 비정상 압축 유동(Unsteady Subsonic Flow), 진동하는 날개(Oscillating Airfoil), 고태양도수지기법(Optimized High Order Compact Scheme)

1. 서 론

본 논문에서는 고 받음각에서 NACA0012 날개가 큰 진폭운동을 할 때 발생하는 풍유동 특성과 날 개에 미치는 공력 특성을 분석하고자 한다. 고 받음 각과 큰 진폭으로 인하여 후류에서 큰 박리와류가 발생함으로 인하여 수치적 정밀도와 안정성이 있는 수치 기법을 필요로 한다. 지배방정식은 Navier–Stokes 방정식
을 사용하였고 난류 모델은 LES 모델을 사용하였다. 수치
기법은 고래상도 수치기법인 OHOC(optimized
High-Order Compact Scheme)[15]가 사용되었고,
시간차분법으로는 4차 Runge-Kutta 기법이 사용되
있다. 고강-고래상도 기법에서 발생하는 수치적 불안정성을
유발하는 비선형 불연속파를 해결하기 위하여 Kim &
Lee[16]가 제안한 인공감쇠모델을 사용하였다. 계산 모델로
는 마취수 0.2, 레이놀즈수 20000일 때 진동하는
NACA0012 날개 주위의 유동특성을 분석하였다.

2. 지배방정식 및 수치기법

2.1 지배방정식(Governing Equation)
지배방정식을 적초좌표계에서 일반 곡선좌표계로
변환하여 사용하였다. 일반좌표계로 변환된 2차원
비정상 압축성 Reynolds Averaged Navier-Stokes
방정식은 다음과 같다. 무차원 변수는 자유유동 속도,
자유유동 밀도 및 실린더 직경이다. 진동하는 날
개를 다루기 위해서는 이동 격자계를 사용하여야 하며
격자계 이동은 변환행렬에서 고려된다.

\[
\frac{\partial \hat{Q}}{\partial t} + \frac{\partial \hat{E}}{\partial x} + \frac{\partial \hat{F}}{\partial y} = \frac{\partial \hat{E}_v}{\partial x} + \frac{\partial \hat{F}_v}{\partial y} \tag{1}
\]

\(t, x, y\): 일반좌표계
\(\hat{Q}\): 유량수분 벡터
\(\hat{E}, \hat{F}\): 각 방향의 비정상 유량벡터
\(\hat{E}_v, \hat{F}_v\): 각 방향의 정상유량벡터

2.2 수치기법(Numerical Method)
시간에 대해서 고차, 고래상도의 높은 정확도를
유지하기 위하여 4차 정밀도의 Runge-Kutta 방법을
사용하였다. 공간에 대하여는 4차의 정밀도를 가지
기 위하여 고차, 고래상도 수치기법인
OHOC(optimized High-Order Compact) 기법을 사
용하였다. 수치 미분은 다음과 같은 7 격자점을 이
용한 내재적 방법에 의해 구한다. 직선유한차분법의
차분 형식은 \(\alpha \neq 0, \beta = 0\) 이거나 \(\alpha = 0, \beta \neq 0\)인
경우로 주변의 여러 점을 고려하여 미분하는 방식이
무란 삼각(Tri-diagonal) 또는 오각(Penta-diagonal) 행

\[
\beta f_{i-2} + \alpha f_{i-1} + f_i + \alpha f_{i+1} + \beta f_{i+2} = \frac{1}{h} \sum_{n=1}^{3} a_n (f_{i+n} + f_{i-n})
\tag{2}
\]

OHOC 기법은 공간에 대해서 높은 해상도를 얻
을 수 있으나, 전방차분법(Upwind Scheme)처럼 파
의 전파특성을 정확히 모사하지 못함으로 인해, 수
치 안정성에 큰 영향을 주는 소산오차와 확산오차가
발생한다. 본 논문에서는 Kim & Lee[16]가 제안한
인공감쇠모델을 사용하여 이러한 오차를 줄이고 해
의 안정성 높였다.

2.3 격자계(Mesh)
격자계는 Fig. 1과 같은 O-형 격자계를 사용하였고, 몇
종류의 격자계를 시험 계산하여 충분히 격자 수반성을 보인
격자 계수로 200×91를 결정하여 사용하였다. 전체 계산 영
역은 실린더 중심으로부터 직경 D의 40배로 설정하였고,
\(\alpha_m\)을 기준으로 하여 진동 반응각진폭 \(\alpha_0\)로 진동하도록 하
였다. 반응각 \(\alpha\)는 시간과 진동 주파수와 다음과 같은 관계
식을 갖는다.

\[
\alpha = \alpha_m + \alpha_0 \sin(2\pi ft)
\tag{3}
\]

Fig. 1 Computational grids a airfoil

2.4 경계조건(Boundary Conditions)
아웃스쪽에서 유량파가 진파해 가면서 경계면에 도
탄력을 때, 물리적인 반사파와 수치적으로 발생하는 비 물리적인 반사파가 발생한다. 물리적인 반사파는 건 파장을 가지고 있어 경계면을 지날 때 심도가 발생할지라도 수치해석에 큰 영향을 주지 않지만, 비 물리적인 반사파는 짧은 파장을 가지고 있고 경계면에서 수치적 미분의 영향으로 인해 불필요한 파동이 발생하게 되고 수치적 에러를 발생시키게 된다. 본 연구에서는 경계면에서 발생하는 비 물리적인 반사를 억제하기 위해 J. W. Kim[17]등이 제안한 입류, 출류 조건 및 벽면조건에 특성치 경계조건을 적용하였다. 외류와 같은 격변형 유동이 벽면을 뻗어나가게 되면서, 특성치 경계조건만으로 비 물리적인 반사파를 억제하기 어렵다. 따라서, 이러한 반사파가 계산영역에 영향을 미치지 않고 최소화가 되기 위해서는 비 물리적인 도해인 필요하다. 본 논문에서는 Sandberg & Sandham[18]이 연구한 뒤 형상 특성치 (Zonal characteristic) 경계조건을 적용하였 다. 뒤 형상 특성치 경계조건은 기존의 지역 특성치 (Local characteristic) 경계조건을 바탕으로 개발된 방법으로 기존의 특성치 경계조건에 비교적 쉽게 적용할 수 있는 장점을 가지고 있다. 특성치 파동 방정식은 고유 속도에 따라서 음향, 외류, 엔트로피 등이 들어오거나 나가가는 특성을 갖는다. \(\lambda = u - c\)의 속도를 갖는 특성치 속도는 다른 3개의 방향의 반대방향으로 계산 영역 안으로 들어오게 된다. \(\lambda < 0\)일 경우, 아래와 같은 식을 적용하게 되면서 특성치의 크기 \(L_i\)가 점점 작아지면서 비 물리적인 반사 를 감소시킨다.

\[
\tilde{L}_i = g(x) \cdot L_i \\
g(x) = 0.5 \left[1 + \cos \left(\frac{\pi (x - x_0)}{x_c - x_0} \right) \right]
\]

\(x_0\) : 완충영역이 시작되는 지점
\(x_c\) : 완충영역이 끝나는 지점

2.5 난류모델

난류모델은 표준 LES SGS(Subgrid Scale Model)[19]을 사용하였다. 기본적으로 LES 모델은 3차원 격자계에 사용하 여야 하기에서는 격자계에 적용함으로써, 흐름방향의 양

격자만을 고려한 형태가 되어, 본격적인 3차원 난류모델을 모사하기는 못하나, 유동성상에 충분한 영향을 준다.

3. 계산 결과 및 고찰

3.1 정상상태 유동계산

수치 계산 점증을 위하여 바하수 0.2, 헤이놀즈수 12000이고, 범위 각 10도 일 때의 정상상태 난개 수

위 유동을 계산하였다. 시간 간격은 0.0002으로 계

산하였으며, 양력 및 저항계수의 수압특성은 Fig. 2

과 같이 약 무차원 시간 20정도에서 수렴하였다.

![Fig. 2 Lift and Drag Coefficient changes over Time for the case of \(\alpha_m = 10^\circ, \alpha_0 = 0^\circ\)](image)

Fig. 3의 (a)와 (b), (c)의 동 압력선도, 동 음력선도 및 동 호도선도를 보면 Fig.2에서 양력계수는 정

상상태로 수렴하였으나, 후류에서 동 미도선도와 동

화도선도를 보면 비 정상유동을 볼 수 있다. 이는 난개면에서는 정상상태에 이르렀으나 후류에서는 비

정상상태임을 나타낸다.
(27일 금) 제2발표장 437

(a) Pressure Contour

(b) Density Contour (c) Vorticity Contour

Fig. 3 Pressure, Density and Vorticity Contours

Fig. 4에는 상하면의 압력분포를 그려졌다.

Fig. 5 Lift and Drag Coefficient Changes over Time for the Cases of
\[a_m = 0, \ a_0 = 15, 20, 30 \]

시간간격은 0.0002를 주었으며, 시간에 따른 계산 결과는 Fig.5의 (a), (b)에서와 같이 양력과 저항계수는 첫 주기에서부터 거의 주기적 수렴성을 갖는다. 그러나 후류영역 및 전체 유동장은 발생된 외력가 후류로 흘러가고 벽면에서 발생한 응향파가 전방향으로 확산되어야 하므로 충분한 주기가 동안의 계산이 필요하다. 양력계수와 저항계수의 주기적 특성은 강제진동 주파수에 따른으로 \(f = 0.1 \)과 같다. Fig. 5에 대응하는 반응각에 따른 양력계수 및 저항계수를 Fig. 6 (a)와 (b)에 그렸다.

Fig. 6 Lift and Drag Coefficient Changes over Angle of Attack for the Cases of
\[\alpha_m = 0, \ \alpha_0 = 15, 20, 30 \]

양력계수 변화를 보면 반응각이 증가와 감소에 따라 증가와 감소함으로 같은 반응각에서 반응각이 감소하는 방향일 때 더 큰 양력계수를 받는다. 저항계수변화에 있어서는 평균반응각이 0임으로 반응각 0도를 기준으로 좌우 대칭을 이루는 것을 볼 수 있다. 저항계수에서도 반응각이 증가하면서 저항계수 가 증가하고, 감소할 때 저항계수도 감소한다. 따라서
서 양의 반응각 기준으로 보면 같은 반응각 일 때 반응각이 증가하는 방향일 때 저항계수가 크다. 주기 수렴된 한 순간의 유동특성들을 보기 위하여 $\alpha_0 = 15^\circ$의 경우에 대해 Fig. 7 (a)~(c)에 등 압력 선도, 등 밀도선도 및 등 왜도선도를 그렸다.

(a) Pressure Contour
(b) Density Contour (c) Vorticity Contour

Fig. 7 Pressure, Density and Vorticity Contours

등 압력선도로부터 날개에 의해 발생한 파동이 전 영역으로 확산되는 것을 볼 수 있으며, 등 밀도 및 등 왜도선도로부터 후류로 흘러가는 압력파와 왜파의 흐름을 볼 수 있다. 그림에 나타나듯이 음향파는 전 영역으로 큰 파도를 가지고 퍼져가며, 후류를 따라 흘러는 압력파와 음향파의 한파동안에서 큰 주기의 파도로 흘러가는 것을 볼 수 있다. 앞서와 같지만 박리 유동특성을 보기 위하여 $\alpha_m = 0^\circ, \alpha_0 = 30^\circ$의 경우에 대해, 날개주의 유선을 Fig. 8 (a)~(d)에 그렸다. 반응각의 전폭이 30도 일어도 불구하고, 날개면에 큰 박리 유동은 발생하지 않고, 따라서 Fig.6의 반응각에 따른 양력계수변화에서도 큰 굴곡이 없이 변화하게 된다.

고 반응각에서 진동특성을 보기 위하여 $\alpha_m = 20^\circ, \alpha_0 = 15^\circ, \alpha_m = 30^\circ, \alpha_0 = 15^\circ, \alpha_m = 30^\circ, \alpha_0 = 20^\circ$이고 $f = 0.1$로 진동하는 경우를 계산하였다. 양력 및 저항계수의 주기적 특성을 보기 위하여 시간에 따른 변화를 Fig. 9에 그렸다.

Fig. 9 Lift and Drag Coefficient Changes over Angle of Attack
계산의 진행시간은 평균반응각이 0일 때와 비교하여 수주기가 더 진행 되었으나, 고 반응각 유동으로 인해 Fig. 5의 경우처럼 완전한 수렴에 이르지는 못했다. 양력계수 변화과정을 보면 반응각이 상승할 때 Fig. 6의 경우처럼 자연스럽게 증가하지만, 반응각이 하강할 경우에는 양력계수에서 큰 곡률과 저항 계수에 선형적 변화가 있음을 볼 수 있다. 이는 날개 뒤에 발생하는 큰 박리유동의 크기와 직접 관련된 것으로 보인다. 응량파의 전파 특성을 보이기 위하여 $\alpha_m = 30^\circ$이고 $\alpha_0 = 20^\circ$인 경우의 양 압력, 밀도 및 등ardo선도를 Fig. 10 (a) - (c)에 그렸다.

(a) Pressure Contours
(b) Density Contour (c) Vorticity Contour
Fig. 10 Pressure, Density and Vorticity Contours
(a)로부터 전 영역에 퍼져가는 응량파의 특성을 볼 수 있으며, 와류와 함께 퍼져가는 압력파의 특성을 볼 수 있다. 여기에서는 이전 그림과 같이 응량파는 긴 과정으로 전 영역으로 퍼져가며, 압력파는 날개 바로 뒤부분 한 응량파 내에서 와류와 함께 퍼져가는 것을 볼 수 있다.

Fig. 11에는 날개 주위에 발생하는 박리유동의 특성을 보이기 위해 가장 반응각 변화의 $\alpha_m = 30^\circ$이고 $\alpha_0 = 20^\circ$ 경우에 대해 시간에 따른 몇 시점에서 유선을 그렸다. 그림들은 주의 할 때에는 큰 박리류동을 볼 수 있으며, 큰 박리유동의 영향에 의해 받음각이 증가할 때에는 양력이 같이 증가하지만, 반응각이 감소할 때는 양력변화가 늦는 것을 볼 수 있다. 이런 영향은 저항 계수에 있어서도 하강계수에서 거의 선형적인 특성을 보여준다.

Fig. 11 Streamline for the case of $\alpha_m = 30^\circ$, $\alpha_0 = 20^\circ$

4. 결론

2차원 비정상 압축성 Navier-Stokes 방정식을 사용하여 NACA0012 날개의 고 반응각 주위에서 미미수 0.2이고, 레이놀즈수 1.2\times 10^4인 비정상유동을 분석하였다. 수치기법은 고체상도수치기법 OCTOC 기법을 사용하였다. 고체상도수치기법을 사용함으로써 비정상유동으로 인하여 날개주위에 발생하는 응량파의 특성과 응력유동과 함께 퍼져가는 압력파의 특성을 볼 수 있었다. 저 반응각에서 날개 뒤쪽에 큰 박리유동이 발생하지 않으나, 고 반응각에서는 날개 뒤쪽에 큰 박리유동이 발생함으로 인하여 양력계수변화에 큰 곡률이 발
생하고, 사찰계수에 있어서도 하강곡면에서 신탁적인 특성을 보여준다.

참고문헌