• Title/Summary/Keyword: unsaturated slopes

Search Result 65, Processing Time 0.028 seconds

Modeling of shallow landslides in an unsaturated soil slope using a coupled model

  • Kim, Yongmin;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.353-370
    • /
    • 2017
  • This paper presents a case study and numerical investigation to study the hydro-mechanical response of a shallow landslide in unsaturated slopes subjected to rainfall infiltration using a coupled model. The coupled model was interpreted in details by expressing the balance equations for soil mixture and the coupled constitutive equations. The coupled model was verified against experimental data from the shearing-infiltration triaxial tests. A real case of shallow landslide occurred on Mt. Umyeonsan, Seoul, Korea was employed to explore the influence of rainfall infiltration on the slope stability during heavy rainfall. Numerical results showed that the coupled model accurately predicted the poromechanical behavior of a rainfall-induced landslide by simultaneously linking seepage and stress-strain problems. It was also found that the coupled model properly described progress failure of a slope in a highly transient condition. Through the comparisons between the coupled and uncoupled models, the coupled model provided more realistic analysis results under rainfall. Consequently, the coupled model was found to be feasible for the stability and seepage analysis of practical engineering problems.

A study on the Stability Analysis of Slope in Unsaturated Soil Based on the Soil-Water characteristic curve (함수특성곡선을 고려한 불포화토 사면의 안정성 연구)

  • Yoon, Min-Ki;Kim, Jong-Sung;Kim, Hyo-Jung;Lee, Yeong-Saeng
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1029-1037
    • /
    • 2008
  • The finite element analysis of transient water flow through unsaturated soils was used to investigate effects of hydraulic characteristics, initial relative degree of saturation, methods to consider boundary condition, and rainfall intensity and duration on water pressure in slopes. The finite element method with shear strength reduction technique was used to evaluate the stability of slopes under rainfall. The slope-related disasters in Korea usually occur between July and September during the typhoon and localized heavy rain. This means that the rainfall is the most important factor that leads to the slope-related disasters. The slope-related disasters can happen at very short time and lead to big damage. To forecast the change of the heave of the groundwater in slope the Seep/w program was used.

  • PDF

Stability Analysis of Unsaturated Weathered Soil Slopes Considering Rainfall Duration (지속강우특성에 따른 불포화 풍화토사면의 안정성분석)

  • Jeong, Sang-Seom;Choi, Jae-Young;Lee, Jae-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1C
    • /
    • pp.1-9
    • /
    • 2009
  • In this study, the influence of wetting band depth by continuous rainfall and the magnitude of wetting front suction on the stability of slopes in weathered soils were investigated by using finite element programs SEEP/W and SLOPE/W. Three different intensities of rainfall (10mm/hr, 30mm/hr, 50mm/hr) were chosen, and the total duration of rainfall was 96 hours. Three infinite slopes with the inclination of 1:1.5 and 1:1.8, 1:2.0 were considered and the typical properties and the shear strength parameters of the weathered soil were applied. It is shown that rainfall duration plays an important role in slope stability. Based on the analytical results, it is found that as the rainfall duration increases, the wetting band depth also increases. Also, the increasing rate of the wetting band depth was decreased as the soil density was increased. These results come from the decrease of the coefficient of permeability and the increase of the soil suction. Finally, it is also shown that the safety factors of slopes by unsaturated analysis are mostly larger than those by saturated analysis. Therefore, commonly used saturated analysis may substantially underestimate the degree of safety factor in realistic situations.

Stability Analysis of Slope in Unsaturated Soil Based on the Characteristics of Rainfall (강우특성을 고려한 불포화토 사면의 안정성 해석)

  • Lee, Gwan-Young;Lee, Kang-Il;Kim, Chan-Kee;Chang, Yong-Chai
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.663-668
    • /
    • 2005
  • The present study proposed to examine the appropriateness of the ground water level condition that had a significant effect on the stability of the slopes and, for this purpose, analyzed the rise of ground water level during the rainy season by applying the average daily rainfall of Seoul for the last 30 years. The result showed that the rise of ground water level was 6.0$\sim$41.0% of the slope height, which suggests that the currently applied condition of ground water level is somewhat overestimated. In addition, the result of interpreting the stability of slopes during the rainy season, slopes were unstable in all conditions when the ground water level was at the ground surface and base failure occurred. This suggests the importance of ground water level condition in stability analysis.

  • PDF

Influence of Rainfall-induced Wetting on Unsaturated Weathered Slopes (강우시 국내 불포화 풍화토 사면에서의 습윤영향 분석)

  • Jeong Sang-Seom;Kim Jae-Hong;Park Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.159-169
    • /
    • 2004
  • Surface failures of slopes in weathered soil are caused by infiltration due to prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the infiltrating water. This paper reports trends of rainfall-induced wetting band depth in two types of weathered soils that are commonly found in Korea. Both theoretical and numerical analyses are presented based on the soil-water characteristic curve (SWCC) obtained using filter paper as well as tensiometer tests. It is found that the magnitude of wetting front suction plays a key role in the stability of slopes in weathered soils. Theoretical analysis based on modified Green and Ampt model tends to underestimate the wetting band depth for typical Korean weathered soils. It was also deduced that for Korean weathered soils, the factor of safety drops rapidly once the wetting band depth of 1.2 m is reached.

Effect of Hysteresis on Soil-Water Characteristic Curve in Weathered Granite and Gneiss Soil Slopes during Rainfall Infiltration (풍화계열 사면의 불포화 함수특성곡선 이력이 강우 침투에 미치는 영향)

  • Shin, Gil-Ho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.55-64
    • /
    • 2006
  • Shallow failures of slopes in weathered soils are caused by infiltration caused by prolonged rainfall. These failures are mainly triggered by the deepening of the wetting band accompanied by a decrease in suction induced by the water infiltration. In this paper, hysteresis on soil-water characteristic curve (SWCC) of granite and gneiss weathered soils is investigated using transient flow analysis respectively. Each case was subjected to artificial rainfall intensities and time duration depending on the laboratory-based drying and wetting processes. The results show that the unsaturated seepage on weathered slopes are very much affected by the initial suction of soils and unsaturated permeability of the soils. In addition, a granite weathered soil has a lower air-entry value, residual matric suction, and wetting front suction and less hysteresis loop than a gneiss weathered soil.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks(I) -Comparative Study of Groundwater Recharge- (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(I) -지하수 유입량의 비교 연구-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-102
    • /
    • 1992
  • Landslides on hillside slopes with shallow soil cover over a sloping bedrock are frequently caused by increases in porewater pressures following of heavy rainfall and it is one of the most important factors of assessing the risk of landslide to predict the groundwater level fluctuations in hillslopes. This paper presents the comparative study of three unsaturated flow models developed by Sloan et al., Reddi, L.N., and Thomas, H.A., Jr., respectively, which are used to predict the increase of groundwater levels in hillside slopes. The parametric study for each of models is also presented. The Kinematic Storage Model(KSM) developed by Sloan et at. is utilized to predict the saturated groundwater flow. They are applied to the two sites in Korea so as to examine the possibility of use in the groundwater flow model. The results show that two unsaturated models developed by Sloan et al. and Reddi, L. N. are largely affected by the uncertain parameters like saturated permeability and saturated water content : the abed model has the potential of use in unsaturated flow model with the optimal estimates of model parameters utilizing available optimization techniques. And it is also found that the KSM must be modified to account for the time delay effect in the saturated zone. The results of this paper are able to be utilized in developing the predictive model of groan dwater level fluctuations in a hillslope.

  • PDF

Permeability Coefficient of Unsaturated Soil in Steep Slope Failure Area (붕괴가 발생한 급경사지의 현장 투수계수)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Park, Dug-Keun;Oh, Jeong-Rim
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.921-926
    • /
    • 2010
  • To examine saturation characteristics of an unsaturated soil in the steep slope area with collapse, it separated dry season from rainy season and measured water content and permeability, and measured permeability by using a tension infiltrometer in the site. In addition, it conducted electrical resistivity survey to look into thickness of ground and geological structure of underground. The collapsed slope increased depth of weathered zone compared to upper slope, and there electrical resistivity anomalous zone caused by the filtrated underground water was observed. The permeability of the collapsed area was observed high compared to upper and lower slopes of retarding basin without collapse, and the permeability measured by dividing the dry season and rainy season was measured high in case of dry season.

  • PDF

A Comparative Study of Surficial Stability Analyses in Unsaturated Soil Slopes (불포화 토사사면의 얕은파괴 해석에 대한 비교 연구)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.135-143
    • /
    • 2001
  • 강우에 의한 잔류토에서의 얕은 사면파괴는 세계적으로 흔히 볼 수 있는 사면파괴의 형태이다. 본 연구에서는 침투가 사면 표면의 안정에 미치는 영향을 평가하기 위해 한계평형법을 이용하는 무한사면 해석법을 연구하였다. 재현기간에 따른 강우강도가 지속기간이 고려되는 임의의 강우에 의해 유발되는 얕은 사면파괴의 가능성을 평가하기 위해서 Green-Ampt 모델에 바탕을 둔 간략법들이 적용되었다. 간략법들에 의한 결과들과 비교하기 위하여 일련의 수치해석이 수행되었다. 그 결과에 의하면 적절하게 선택된 입력값을 사용하면 수정간략법이 더욱 엄밀한 해석법인 유한요소해석과 근사한 합리적인 결과를 줌을 알 수 있다.

  • PDF

Three-dimensional Stability Analysis of Landslides in Unsaturated Soils: A Case Study (불포화 지반에서의 산사태 3차원 안정해석에 대한 사례연구)

  • Kim, Seong Jin;Oh, Seboong;Yoo, Young Geun;Shin, Ho Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.359-369
    • /
    • 2022
  • In slope stability analysis for landslides, mountains have various slopes and geographical features, and hence it is necessary to estimate stability using rigorous analysis methods. In this study, after the analysis of infiltration behavior through unsaturated layers due to rainfall, the stability of landslide was estimated to account for the variation of pore water pressures. In the analysis of slope stability, a three-dimensional slope analysis was compared with an infinite slope analysis in a case study of terrain in which an actual landslide occurred. In the three-dimensional slope stability analysis, it was found that the location of the failure and the failure area were predicted accurately based on the detailed geological information despite the variation of geographical features.