• Title/Summary/Keyword: unmanned robot

Search Result 209, Processing Time 0.024 seconds

Development of a Coaxial Rotor Flying Robot for Observation (감시용 동축로터 비행로봇의 개발)

  • Kang, Min-Sung;Shin, Jin-Ok;Park, Sang-Deok;Whang, Se-Hee;Cho, Kuk;Kim, Duk-Hoo;Ji, Sang-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • A coaxial rotor flying robot is developed for surveying and reconnoitering various circumstances under calamity environment. The robot has two contrarotating rotors on a common axis, an embedded microcontroller, an IMU(Inertial Measurement Unit), an IR sensor for height control, a micro camera for surveillance, ultrasonic position sensors and wireless communication devices. A bell-bar mounted on the top of the upper rotor hub increases stability and improves flight performance. In this paper, we present a dynamic model of a coaxial rotor flying robot and design an embedded controller far the robot, and implement them to control the developed flying robot. Experimental results show that the proposed controller is valid for autonomous hovering and position control.

Performance Analysis of Unmanned Robot System based on LOS/NLOS channel (LOS/NLOS 채널에 따른 무인로봇체계의 시스템 성능분석)

  • Song, Yuchan;Cha, Gyeong Hyeon;Hwang, Yu Min;Lee, Jae-Seang;Han, Myoung-hun;Kim, Jin Young;Shin, Yoan
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.4
    • /
    • pp.12-16
    • /
    • 2015
  • Unmanned robot system has become a significant part of network centric warfare. Unnlike the commercial wireless system, however, it is tricky to provide reliable communication in the harsh environment: tactical and military communication. Therefore, it needs to be considered when the base station and mobile has poor communication channel. In this paper, we proposed an efficient operating algorithm for unammned robot system with ensuring communication survivability in the harsh environment. From the simulation, we adopted the SUI channel suitable for domestic mountainous area and open terrain with Rician factor K.

Study on Power Control and Optimal Management for Dog-Horse Robot (견마로봇의 전력제어 및 최적 운용에 대한 연구)

  • Kang, Tae-Ha;Huh, Jin-Wook;Kim, Jun;Kang, Sin-Cheon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.343-348
    • /
    • 2010
  • Recently, unmanned electric vehicles are increasingly interested among all of the world since they can provide low exhaust gas, high efficiency and high mobility. To exploit their silent maneuver and high mobility, unmanned electric vehicles have been developed since early 1980's for military. However, it is not easy to design and control a power system satisfying operating duration and mobility performance requirements based on various mission profiles for military use under the conditions of limited space and weight. Moreover it is also necessary to prevent over-charge, over-discharge and voltage unbalance between cells of battery to secure high voltage battery which is serially connected with muti-cells. In this paper, we presents power control and optimal management method for the dog-horse robot which adopts a electric power system and suggests a guide-line to manage and control to secure high voltage battery.

A Study on the User Experience at Unmanned Cafe Using Big Data Analsis: Focus on text mining and semantic network analysis (빅데이터를 활용한 무인카페 소비자 인식에 관한 연구: 텍스트 마이닝과 의미연결망 분석을 중심으로)

  • Seung-Yeop Lee;Byeong-Hyeon Park;Jang-Hyeon Nam
    • Asia-Pacific Journal of Business
    • /
    • v.14 no.3
    • /
    • pp.241-250
    • /
    • 2023
  • Purpose - The purpose of this study was to investigate the perception of 'unmanned cafes' on the network through big data analysis, and to identify the latest trends in rapidly changing consumer perception. Based on this, I would like to suggest that it can be used as basic data for the revitalization of unmanned cafes and differentiated marketing strategies. Design/methodology/approach - This study collected documents containing unmanned cafe keywords for about three years, and the data collected using text mining techniques were analyzed using methods such as keyword frequency analysis, centrality analysis, and keyword network analysis. Findings - First, the top 10 words with a high frequency of appearance were identified in the order of unmanned cafes, unmanned cafes, start-up, operation, coffee, time, coffee machine, franchise, and robot cafes. Second, visualization of the semantic network confirmed that the key keyword "unmanned cafe" was at the center of the keyword cluster. Research implications or Originality - Using big data to collect and analyze keywords with high web visibility, we tried to identify new issues or trends in unmanned cafe recognition, which consists of keywords related to start-ups, mainly deals with topics related to start-ups when unmanned cafes are mentioned on the network.

Development of the remote control system for Internet-based mobile robot using Embedded Linux and Qt

  • Park, Tae-Gyu;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.622-627
    • /
    • 2003
  • The existing remote control system have some inherent disadvantage of direct control in the limit range. In some special cases, for example, a power apparatus, an unmanned factory, a nuclear factory, a security management system, the tele-operation is needed to control remote robot without limit space. This field is based on the Internet communication. Because the Internet is constructed all over the world. And it is possible that we control remote mobile robot in the long distance. In this paper, we developed a remote control system. This system is divided into two primary parts. These are local site and remote site. There are the moving robot and web server in the remote site and there is the robot control device in local site. The moving robot is moved by two stepper motors and the robot control device consists of SA-1100 micro controller and embedded Linux. And this controller is an embedded system. Public personal computer which is connected the Internet is used for the web server. The web server provides the mobile robot control interface program to the remote controller and captures the image for feedback information. In the whole system, a robot control device is connected with moving robot and web server through the Internet. So the operator can control the moving robot in the distance through the Internet.

  • PDF

Reliability Qualification Test of a Unmanned Control Robot System for an Excavator (굴삭기용 무인조종로봇 신뢰성 보증 시험에 대한 연구)

  • Back, Seung Jun;Son, Young Kap;Kim, Jun Hee;Lee, Jong Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • This paper proposes the development of a method for assessing the system reliability of an unmanned control robot system for an excavator. It then shows the results of the reliability qualification test based on the proposed method. The robot system functions to ensure the safety of the workers who control excavators in dangerous working environments, and the system reliability was calculated by integrating the reliabilities of the system components. Thus, test equipment for the three key units of the robot system were constructed and used in accelerated life testing. From the life testing results, guaranteed mean time between failures for the chosen confidence level was estimated, and the reliability qualification testing method of the robot system using small sample sizes was proposed.

Attack Datasets for ROS Intrusion Detection Systems (ROS 침입 탐지 시스템을 위한 공격 데이터셋 구축)

  • Hyunghoon Kim;Seungmin Lee;Jaewoong Heo;Hyo Jin Jo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.4
    • /
    • pp.681-691
    • /
    • 2024
  • In recent decades, research and development in the field of industrial robotics, such as an unmanned ground vehicle (UGV) and an unmanned aerial vehicle (UAV), has been significant progress. In these advancements, it is important to use middleware, which facilitates communication and data management between different applications, and various industrial communication middleware protocols have been released. The robot operating system (ROS) is the most widely adopted as the main platform for robot system development among the communication middleware protocols. However, the ROS is known to be vulnerable to various cyber attacks, such as eavesdropping on communications and injecting malicious messages, because it was initially designed without security considerations. In response, numerous studies have proposed countermeasures to ROS vulnerabilities. In particular, some work has been proposed on generating ROS datasets for intrusion detection systems (IDS), but there is a lack of research in this area. In this paper, in order to contribute to improving the performance of ROS IDSs, we propose a new type of attack scenario that can occur in the ROS and build ROS attack datasets collected from a real robot system and make it available as an open dataset.

Development of Agriculture Robot for Unmanned Management in Controlled Agriculture (시설 농업 무인 관리를 위한 식물 생산 로봇 개발)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.444-450
    • /
    • 2011
  • Environmental change, labor shortage, and international trade politics make agricultural automation ever more important. The automation demands the highest technology due to the nature of agriculture. In this paper, autonomous pesticide spray robot system has been developed for rose farming in the glass house. We developed drive platform, navigation/localization system, atomization spray system, autonomous, remote, and manual operation system, and monitoring system. The robot will be a great contribution to automation of hazardous labor-demanding chore of pesticide control in glass houses.

How to Derive the Autonomous Driving Function Level of Unmanned Ground Vehicles - Focusing on Defense Robots - (무인지상차량의 자율주행 기능수준 도출 방법 - 국방로봇을 중심으로 -)

  • Kim, Yull-Hui;Choi, Yong-Hoon;Kim, Jin-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.205-213
    • /
    • 2017
  • This paper is a study on the method to derive the functional level required for autonomous unmanned ground vehicle, one of the defense robots. Conventional weapon systems are not significantly affected by the operating environment, while defense robots exhibit different performance depending on the operating environment, even if they are on the same platform. If the performance of defense robot is different depending on operational environment, results of mission performance will be vary significantly. Therefore, it is necessary to clarify the level of function required by the military in order to research and develop most optimal defense robots. In this thesis, we propose a method to derive the required function level of unmanned ground vehicles, focusing on autonomous driving, one of the most vital functions of defense robots. Our results showed that the autonomous driving function depending intervention levels and evaluated functional sensitivity for autonomous driving of the unmanned vehicle using climate and topography as variables.

A Study on a Real-Time Aerial Image-Based UAV-USV Cooperative Guidance and Control Algorithm (실시간 항공영상 기반 UAV-USV 간 협응 유도·제어 알고리즘 개발)

  • Do-Kyun Kim;Jeong-Hyeon Kim;Hui-Hun Son;Si-Woong Choi;Dong-Han Kim;Chan Young Yeo;Jong-Yong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.5
    • /
    • pp.324-333
    • /
    • 2024
  • This paper focuses on the cooperation between Unmanned Aerial Vehicle (UAV) and Unmanned Surface Vessel (USV). It aims to develop efficient guidance and control algorithms for USV based on obstacle identification and path planning from aerial images captured by UAV. Various obstacle scenarios were implemented using the Robot Operating System (ROS) and the Gazebo simulation environment. The aerial images transmitted in real-time from UAV to USV are processed using the computer vision-based deep learning model, You Only Look Once (YOLO), to classify and recognize elements such as the water surface, obstacles, and ships. The recognized data is used to create a two-dimensional grid map. Algorithms such as A* and Rapidly-exploring Random Tree star (RRT*) were used for path planning. This process enhances the guidance and control strategies within the UAV-USV collaborative system, especially improving the navigational capabilities of the USV in complex and dynamic environments. This research offers significant insights into obstacle avoidance and path planning in maritime environments and proposes new directions for the integrated operation of UAV and USV.