• 제목/요약/키워드: unknown dynamic force

검색결과 32건 처리시간 0.025초

DC 모터를 위한 전류궤환형 학습제어기 설계 (Design of Current-Feedback Control for DC Motors)

  • 백승민;김진홍;국태용
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권12호
    • /
    • pp.1520-1526
    • /
    • 1999
  • This paper presents a current feedback learning controller for dynamic control of DC motors. The proposed controller uses the full third-order dynamics model of DC motor system to drive stable learning rules for virtual current learning input, voltage learning input, and the coefficient of electromotive force. It is shown that the proposed learning controller drives the state of uncertain DC motor system with unknown system parameters and external load torque to the desired one globally asymptotically. Computer simulation and experimental results are given to demonstrate the effectiveness of the proposed adaptive learning controller.

  • PDF

Dynamic Free-surface Deformations in Axisymmetric Liquid Bridges

  • Sim B.-C.;Kim W.-S.;Zebib A.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.160-161
    • /
    • 2003
  • Thermocapillary convection is a surface tension driven flow due to a temperature gradient along an interface. It occurs during a crystal-growth process and therefore understanding the convection is important to material processing in microgravity. Although modelling of the float-zone crystal-growth process has been of interest for a few decades, most studies of liquid bridges assumed non-deformable flat surfaces. In reality, the surface profile, g(t,z), is unknown and should be obtained as a solution to the coupled transport equations along with the surface force balance. Here we report on a numerical study of axisymmetric thermocapillary convection in liquid bridges with deformable surfaces. The interface is determined as part of the complete solution. The influence of the capillary number (Ca), Reynolds number (Re), Prandtl number (Pr) and aspect ratio(Ar) on the dynamics is explored.

  • PDF

Beam-rotating machinery system active vibration control using a fuzzy input estimation method and LQG control technique combination

  • Lee, Ming-Hui
    • Smart Structures and Systems
    • /
    • 제10권1호
    • /
    • pp.15-31
    • /
    • 2012
  • This study proposes an active control method to suppress beam-rotating machinery system vibrations. The present control method is a combination of the fuzzy input estimation method (FIEM) and linear quadratic Gaussian problem (LQG) algorithms. The FIEM can estimate the unknown input and optimal states by measuring the dynamic displacement, the optimal estimated states into the feedback control; thereby obtaining the optimal control force for a random linear system. Active vibration control of a beam-rotating machinery system is performed to verify the feasibility and effectiveness of the proposed algorithm. The simulation results demonstrate that the proposed method can suppress vibrations in a beam-machine system more efficiently than the conventional LQG method.

Single-Molecule Methods for Investigating the Double-Stranded DNA Bendability

  • Yeou, Sanghun;Lee, Nam Ki
    • Molecules and Cells
    • /
    • 제45권1호
    • /
    • pp.33-40
    • /
    • 2022
  • The various DNA-protein interactions associated with the expression of genetic information involve double-stranded DNA (dsDNA) bending. Due to the importance of the formation of the dsDNA bending structure, dsDNA bending properties have long been investigated in the biophysics field. Conventionally, DNA bendability is characterized by innate averaging data from bulk experiments. The advent of single-molecule methods, such as atomic force microscopy, optical and magnetic tweezers, tethered particle motion, and single-molecule fluorescence resonance energy transfer measurement, has provided valuable tools to investigate not only the static structures but also the dynamic properties of bent dsDNA. Here, we reviewed the single-molecule methods that have been used for investigating dsDNA bendability and new findings related to dsDNA bending. Single-molecule approaches are promising tools for revealing the unknown properties of dsDNA related to its bending, particularly in cells.

상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토 (Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System)

  • 구남국;하솔;노명일
    • 한국전산구조공학회논문집
    • /
    • 제26권4호
    • /
    • pp.247-254
    • /
    • 2013
  • 본 논문에서는 해상 시추작업을 위한 heave compensation system의 시뮬레이션 모델을 개발하였다. 우선 시뮬레이션을 위하여, 다물체계 동역학 커널을 개발하였다. 다물체계 동역학 커널은 입력 받은 heave compensation system 시뮬레이션 모델의 운동학적 정보를 이용하여 recursive Newton-Euler formulation 방법을 기반으로 운동방정식을 자동으로 구성하고, 수치적으로 해를 계산하는 기능을 한다. 그리고 해상 시추선에 작용하는 외력을 계산하기 위하여 유체 정역학적 힘과 유체 동역학적 힘을 계산하는 모듈을 개발하였다. 이와 같이 개발한 커널과 모듈들을 적용하여 해상 시추선의 hoisting system 동적거동 해석을 수행하고, 관절에서의 구속력을 계산하였다.

슬라이딩 모드 제어기를 이용한 이족로봇의 강건제어 (Robust Control of Biped Robot Using Sliding Mode Controller)

  • 박인규;김진걸
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.576-583
    • /
    • 2000
  • A robust position control using a sliding mode controller is adopted for the stable dynamic walking of the biped. For the biped robot that is modeled with 14 degrees of freedom rigid bodies using the method of the multibody dynamics, the joint angles for simulation are obtained by the velocity transformation matrix using the given Cartesian foot and trunk trajectories. Hertz force model and Hysteresis damping element which is used in explanation of the energy dissipation during contact with ground are used for modeling of the ground reactions during the simulation. By the obtained that forces which contains highly confused noise elements and the system modeling uncertainties of various kinds such as unmodeled dynamics and parameter inaccuracies, the biped system will be unstable. For that problems, we are adopting a nonlinear robust control using a sliding mode controller. Under the assumption that the esimation error on the unknown parameters is bounded by a given function, that controller provides a successful way to preserve stability and achieve good performance, despite the presence of strong modeling imprecisions or uncertainties.

  • PDF

이족보행로봇을 위한 슬라이딩 제어기 설계 (Sliding Mode Controller Design for Biped Robot)

  • 박인규;김진걸;김기식
    • 한국정밀공학회지
    • /
    • 제18권5호
    • /
    • pp.137-146
    • /
    • 2001
  • A robust controller with the sliding mode is proposed for stable dynamic walking of the biped robot in this paper. For the robot system to be controlled, which is modeled as 14 DOF rigid bodies by the method of multi-body dynamics, the joint angle trajectories are determined by the velocity transformation matrix. Also Hertz force model and Hysteresis damping element are utilized for the ground reaction and impact forces during the contact with the ground. The biped robot system becomes unstable since those forces contain highly confused noise components and some discontinuity, and modeling uncertainties such as parameter inaccuracies. The sliding mode control is applied to solve above problems. Under the assumption of the bounded estimation errors on the unknown parameters, the proposed controller provides a successful way to achieve the stability and good performance in spite of the presence of modeling imprecisions of uncertainties.

  • PDF

Fourier 급수전걔를 이용한 부분적으로 유체가 채워진 원통형 셸의 고유진동 해석 (Fourier Series Expansion Method for Free Vibration Analysis of a Partially Liquid-Filled Circular Cylindrical Shell)

  • 정경훈;이성철
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.163-175
    • /
    • 1994
  • An analytical method for nautral frequencies of a partially liquid- filled circular cylindrical shell with various boundary conditions is developed by means of the Stokes's transformation and Fourier series expansion on the basis of Sanders' shell equation. The liquid-shell coupled system is divided into two regions for convenient formulation. One is the empty shell region in which the Sanders' shell equations are formulated without the lipuid effect, the other is wetted shell region in which the shell equations are formulated with consideration of the liquid dynamic effect. The shell equations for each regions are combined by the geometry and the force continuities at the junction of the two regions. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in axial direction. The unknown parameters are selected to satisfy the boundary condition along the wetted shell surface. The natural frequencies of the liquid filled cylindraical shells with the clamped- free and the clamped-clamped boundary conditions examined in the previous works, are obtained by this analytical method. The results are compared with the previous works, and excllent agreement is found for the natural frequencies of the shells.

  • PDF

부재간 결합부의 동적 특성 분석 및 강성 예측 (Analysis of the Dynamical Characteristics and Prediction of Stiffness for the Joint between Members)

  • 윤성호
    • 한국기계가공학회지
    • /
    • 제18권2호
    • /
    • pp.58-64
    • /
    • 2019
  • This paper describes the analysis of dynamic characteristics and prediction of the stiffness for the joint between structural members. In the process of deriving the governing equations, the stiffness values responsible for the moment and shear force were modelled by using linear and torsional springs in the middle of a clamped-clamped beam. The sensitivities of the natural frequency and modal assurance criterion were investigated as a function of the dimensionless linear and torsional spring stiffness. The reliability of the predictions for the linear and torsional stiffness values was verified by the inverse computations of the stiffness matrix. The predictive and exact theoretical stiffness values were compared for the stiffness element in the finite element formulation, and their results show an excellent correlation. It is strongly anticipated that although the proposed methodology is currently limited to the analytical utilization, it will provide a useful tool to estimate unknown joint stiffness values based on the experimental natural frequency and mode shape.

외란 관측기를 이용한 휴머노이드 무게 중심 유연 동작 제어 (Center of Mass Compliance Control of Humanoid Using Disturbance Observer)

  • 박경재;김명주;박재흥
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.339-346
    • /
    • 2022
  • To operate in real environment, humanoid robots should be able to react to unknown disturbances. To deal with disturbances, various robust control algorithms have been developed for decades. But for collaborative works such as teleoperation system, a compliance control can be the better solution for disturbance reactions. In this paper, a center of mass (CoM) compliance control algorithm for humanoid robots is proposed. The proposed algorithm is based on the state observer and positive feedback of disturbance. With the state observer based on humanoid CoM control performance model, disturbance in each direction can be observed. The positive feedback of disturbances to the reference CoM trajectory enables compliant motion. The main contributions of this algorithm are achieving compliance independently in each axis and maintaining balance against external force. Through dynamic simulations, the performance of the proposed method was demonstrated. Under two types of disturbance conditions, humanoid robot DYROS-JET reacted with compliant motion via the proposed algorithm.