• 제목/요약/키워드: unit weight of concrete

검색결과 333건 처리시간 0.031초

수중불분리성 콘크리트의 해양공사 적용에 관한 기초적 연구 (A Fundamental Study on the Antiwashout Underwater Concrete for the Underwater Work of Ocean)

  • 김명식;윤재범;박세인
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.25-34
    • /
    • 2000
  • When concrete is placed underwater, it is diluted with separating cementitious material and as a result the quality of concrete becomes poor. To solve this problem, antiwashout underwater concrete is increasingly used for the construction and repair of the concrete structure underwater. The objective of this study is to investigate the characteristics of antiwashout underwater concrete as to the mix proportion, casting and curing water through experimental researches. The unit weight of water and cement, water-cement ratio, fine aggregate ratio, unit weight of antiwashout underwater agent and superplasticizer, and casting and curing water were chosen to measure the suspended solids, pH, air contents, slump flow, unit weight of hardened concrete, and compressive strength. From this study, the incremental modulus at mix proportion design and unit weight of antiwashout underwater agent were increased more than fresh water, and it is a optimum mix proportion that the unit weight of water(and cement) is 230kg/$\textrm{m}^3$(460kg/$\textrm{m}^3$), waterOcement ratio is 50%, fine aggregate ratio is 40%, unit weight of antiwashout underwater agent is 1.2% of water contents per unit weight of concrete, and unit weight of supeplasticizer is 2.5% of cement contents per unit weight of concrete when the antiwashout underwater concrete is used for the underwater work of ocean.

현장 타설 콘크리트의 단위수량 측정 및 관리 개선 방안 제시 (A Proposal for Improving the Measurement and Management of Unit Water Content in In-Situ Concrete)

  • 윤자연;장효준;이태규;최형길
    • 한국건축시공학회지
    • /
    • 제24권3호
    • /
    • pp.319-329
    • /
    • 2024
  • 본 연구에서는 국내외 단위수량 규정을 조사하고 현장 타설 콘크리트의 단위수량을 평가하였다. 콘크리트 품질을 타이틀로 하여 핵심 단어 시각화했을 때 단위수량이 높은 중요도를 가짐을 확인할 수 있었다. 또한 단위수량 관리 및 단위수량 측정 방법에서 한국과 일본 간 상대적으로 큰 차이가 나타나지 않음을 알 수 있었다. 현장에 반입된 콘크리트의 단위수량을 단위용적질량법을 이용하여 계산한 결과, 현장에서 임의로 채취한 샘플에서 단위수량이 불균일하고 가변적이며, 단위수량이 적정 단위수량 기준을 초과하는 결과를 확인할 수 있었다. 현장 타설 콘크리트의 품질관리를 위해서는 레미콘 업체, 건설업체, 검사관이 단위수량에 대한 엄격한 기준을 준수하는 것이 중요하며, 명확한 단위수량 측정 매뉴얼 제공과 철저한 교육, 주기적인 현장 점검 등 보다 체계적이고 실용적인 시스템 구축이 필요하다고 판단된다.

전기로제강 분진의 복합안정화 처리를 통한 에코이공경량골재의 개발 및 콘크리트 적용 연구 (A Study on the Development of the Artigicial Eco Light-Weight Aggregate using EAF-Dust and Application of the Concrete)

  • 이진우;김경민;정철희;배연기;이재삼
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.149-152
    • /
    • 2005
  • To make artificial light-weight aggregate with EAF-dust and estimate ability to apply to concrete, characteristics of the aggregate were considered in density, weight of unit volume, fineness modulus and so on. And then it was executed to experiments of the concrete mixed with the light-weight aggregate. As it was results that artificial light-weight aggregate with EAF-dust was heavier and more watertight than with only clay, concrete weight of unit volume was heavier than with expended clay aggregate. But it was regarded that concrete with EAF-dust artificial aggregate was able to field application as light-weight concrete because concrete of the weight of unit volume was lighter and compress strength and workability were similar to normal concrete.

  • PDF

콘크리트의 기건 단위질량을 고려한 인장강도 예측모델 제안 (A Proposal of Tensile Strength Prediction Models Considering Unit Weight of Concrete)

  • 심재일;양근혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권4호
    • /
    • pp.107-115
    • /
    • 2012
  • 본 연구에서는 경량 콘크리트에 대한 361개, 보통중량 콘크리트에 대한 1,335개 및 고중량 콘크리트에 대한 221개의 데이터를 이용하여 콘크리트의 인장강도 (직접인장강도, 쪼갬인장강도 및 파괴계수)에 대한 설계기준과 기존 연구자들의 제안모델의 안정성을 평가하였다. 콘크리트 인장강도 예측을 위한 대부분의 제안 식들은 보통중량 콘크리트의 실험결과를 이용하여 압축강도의 함수로서 제시되었다. 하지만 데이터베이스의 분석은 콘크리트 인장강도는 기건 단위질량에 의해서도 중요한 영향을 받음을 보여준다. 이에 따라, 콘크리트 인장강도에 대한 기준 및 제안모델들은 기건 단위질량 2,100 $kg/m^3$ 이하, 압축강도 50 MPa 이상에서는 실험결과와의 불일치가 증가하였다. 한편, 본 연구에서 콘크리트 기건 단위질량을 고려하여 제시된 콘크리트 인장강도 예측 모델들은 실험결과와 비교적 잘 일치하였다.

전기로 산화슬래그 골재를 활용한 중량 콘크리트의 단위 용적 중량 변화에 따른 X-선 차폐 성능 비교 (Comparison of X-ray Shielding Performance according to the Weight of unit volume of Heavy Weight Concrete Utilizing Electric Arc Furnace Oxidizing Slag.)

  • 임희섭;이한승;최재석
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.35-36
    • /
    • 2013
  • Electric arc furnace oxidizing slag from massively produced steel slag has been used in road bases and subbases, hot mix asphalt, and landfill. Electric arc furnace oxidizing slag contains iron (15%~30%) and has a high density of 3.0~3.7 ton/m3. Depending on the type and amount of concrete aggregates, the radiation-shielding characteristics can vary. Therefore, aggregates of electric arc furnace oxidizing slag can be considered for the production of radiation-shielding concrete. The experimental design of this study is experiments on Compressive strength experiments, X-ray irradiation experiments, and experiments related to the unit volume weight were carried out on hardened concrete. This experiment compared the performance evaluation of radiation shielding of concrete using electric arc furnace oxidizing slag.

  • PDF

Seismic performance of lightweight aggregate concrete columns subjected to different axial loads

  • Yeon-Back Jung;Ju-Hyun Mun;Keun-Hyeok Yang;Chae-Rim Im
    • Structural Engineering and Mechanics
    • /
    • 제88권2호
    • /
    • pp.169-178
    • /
    • 2023
  • Lightweight aggregate concrete (LWAC) has various advantages, but it has limitations in ensuring sufficient ductility as structural members such as reinforced concrete (RC) columns due to its low confinement effect of core concrete. In particular, the confinement effect significantly decreases as the axial load increases, but studies on evaluating the ductility of RC columns at high axial loads are very limited. Therefore, this study examined the effects of concrete unit weight on the seismic performance of RC columns subjected to constant axial loads applied with different values for each specimen. The column specimens were classified into all-lightweight aggregate concrete (ALWAC), sand-lightweight aggregate concrete (SLWAC), and normal-weight concrete (NWC). The amount of transverse reinforcement was specified for all the columns to satisfy twice the minimum amount specified in the ACI 318-19 provision. Test results showed that the normalized moment capacity of the columns decreased slightly with the concrete unit weight, whereas the moment capacity of LWAC columns could be conservatively estimated based on the procedure stipulated in ACI 318-19 using an equivalent rectangular stress block. Additionally, by applying the section lamina method, the axial load level corresponding to the balanced failure decreased with the concrete unit weight. The ductility of the columns also decreased with the concrete unit weight, indicating a higher level of decline under a higher axial load level. Thus, the LWAC columns required more transverse reinforcement than their counterpart NWC columns to achieve the same ductility level. Ultimately, in order to achieve high ductility in LWAC columns subjected to an axial load of 0.5, it is recommended to design the transverse reinforcement with twice the minimum amount specified in the ACI 318-19 provision.

초경량 폴리머 콘크리트의 공학적 특성 (Engineering Properties of Surlightweight Polymer Concrete)

  • 성찬용;김경태
    • 한국농공학회지
    • /
    • 제39권4호
    • /
    • pp.75-81
    • /
    • 1997
  • This study was performed to evaluate the engineering properties of surlightweight polymer concrete using synthetic lightweight aggregate. The following conclusions were drawn; 1. The unit weight was in the range of 0.849~0.969t/$m^3$, the unit weights of those concrete were decreased by 58 ~ 63% than that of the normal cement concrete. 2. The highest strength was achieved by $P_1$, and compressive strength was increased by 93% and bending strength by 364% than that of the normal cement concrete, respectively. 3. The ultrasonic pulse velocity was in the range of 2, 346~2, 702m/s, which was low compared to that of the normal cement concrete. 4. The dynamic modulus of elasticity was in the range of $1.561{\times} 10{^5}~1.916{\times} 10{^5}kgf/cm^2$, which was approximately 52~98% of that of the normal cement concrete. 5. The compressive and bending strength were increased with the increase of unit weight. But, the dynamic modulus of elasticity and ultrasonic pulse velocity were decreased with the increase of unit weight.

  • PDF

왕겨재를 혼입한 콘크리트의 동결융해 저항성에 관한 실험적 연구 (An Experimental Study on the Resistance of Concrete Included Rice Husk Ash Against Rapid Freezing and Thawing)

  • 이준구;박광수;이응찬;김한중
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.294-300
    • /
    • 1999
  • After researching the physical properties of the concrete included Rice Husk Ash(RHA concrete) and workability of fresh concrete admixed RHA, we have tested durability of RHA-concrete against freeaing and thawing in the winter using rapid freezing and thawing test method(KS F 2456) . There aretwo hypotheses to explain the failure mechanism of a freezing and thawing action. First, the hydraulic pressure in the pores of freezing concrete make an internal stress of concrete structures outbreaking micro crack in the face of concrete, Second, Frost action causing damage to cement paste repeatedly come from soil frost action, freezing water in the capillaries. Initial Relative Dynamic Modulus of Elasticity (DME) was biggest in cae of unit binder weight 600kgf/㎥ and relative dynamic modulus of elasticity increased until 300cycles. In general , initial relative DME was proportional to unit binder weight . Relative DME was decreased in proportion to unit binder weight in the case of 300, 400, 500kgf/㎥ , but relative DME fo the others remained more than 90% until 300 cycles. It was not good effect of intermixed RHA to concrete in case of below unit binder weight 300kgf/㎥ and the resistance of freezing and thawing was not good either.

  • PDF

콘크리트의 기건단위질량을 고려한 콘크리트 압축강도의 크기효과 (Size Effect of Concrete Compressive Strength Considering Dried Unit Weight of Concrete)

  • 심재일;양근혁;이성태
    • 콘크리트학회논문집
    • /
    • 제27권2호
    • /
    • pp.169-176
    • /
    • 2015
  • 현재까지 발표된 크기효과법칙은 보통중량 콘크리트에 기반하고 있어 파괴특성이 다른 경량골재 콘크리트에서는 그 활용성이 의문시되고 있다. 따라서 이 연구에서는 콘크리트의 기건단위질량이 압축강도의 크기효과에 미치는 영향을 예측할 수 있는 모델을 개발하고 기존 연구결과들을 모아 데이터베이스화하였다. 그리고 비선형 파괴역학에 근거한 Ba${\check{z}}$ant와 Kim and Eo의 예측모델 및 이 연구에서 제안한 식에 대한 실험상수들을 결정한 후, 상호 비교 분석하였다. 그 결과, 콘크리트의 기건단위질량을 고려한 본 연구의 예측모델이 Ba${\check{z}}$ant와 Kim and Eo의 예측모델보다 경량골재 콘크리트에 대한 실험결과를 더 잘 예측하고 있음을 알 수 있었다.

재생시멘트와 폐 EPS 재생골재를 사용한 포러스 콘크리트 물성 (A Property of Porous Concrete applied by Recycled Cement and using Recycled Aggregates Made of EPS Waste)

  • 김성수;박차원;안재철;강병희
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술대회지
    • /
    • pp.59-63
    • /
    • 2004
  • In recent days. it is necessary to find environment-friendly way of diposing industrial waste and reclying system. So this study will analyze the property of Porous concrete improved by concrete waste powder and recycled lightweight aggregate and then suggest the ways of reclying. The method deals with experimenting unit weight of capacity. thermal conductivity, compression and ultrasonic pluse velocity. Considering the relation between ultrasonic pluse velocity and unit weight & thermal conductivity through the graph. the result of relation between ultrasonic pluse velocity and unit weight & thermal conductivity on the graph expessed their high interaction shown as direct proportion on the graph. Recycled Porous concrete merits lightweight and adiabatic. Therefore. we will expect that the current using ALC and Recycled Porous concrete has be similar thermal conductivity.

  • PDF