• 제목/요약/키워드: unit time

검색결과 5,636건 처리시간 0.031초

정보검색(情報檢索)시스템의 평가(評価)에 관한 연구(硏究) (A study on evaluation of information retrieval system)

  • 박인웅
    • 한국비블리아학회지
    • /
    • 제5권1호
    • /
    • pp.85-105
    • /
    • 1981
  • Information is an essential factor leading the rapid progress which is one of the distinguished characteristics in modem society. As more information is required and as more is supplied by individuals, governmental units, businesses, and educational institutions, the greater will be the requirement for efficient methods of communication. One possibility for improving the information dissemination process is to use computers. The capabilities of such machine are beginning to be used in the process of Information storage, retrieval and dissemination. An important problems, that must be carefully examined is whether one technique for information retrieval is better for worse than another. This paper examines problem of how to evaluate an information retrieval system. One specific approach is a cost accounting model for use in studying how to minimize the cost of operating a mechanized retrieval system. Through the use of cost analysis, the model provides a method for comparative evaluation between systems. The general cost accounting model of the literature retrieval system being designed by this study are given below. 1. The total cost accounting model of the literature retrieval system. The total cost of the literature retrieval system = (the cost per unit of user time X the amount of user time) + ( the cost per unit of system time X the amount of system time) 2. System cost accounting model system cost = (the pre-search system cost per unit of time X time) + (the search system cost per unit of time X time) + (the post search system cost per unit of time X time) 1) Pre-search system cost per unit of time = cost of channel per unit time + cost of central processing unit per unit time + cost of storage per unit time 2) Search system cost per unit of time = comparison cost + document representation cost. 3) Post-search system cost per unit of time. = cost of channel per unit time + cost of central processing unit per unit time + cost of storage per unit time 3. User cost accounting model Total user cost = [pre-search user cost per unit of time X (time + additional time) ] + [search user cost per unit of time X (time + additional time) ] + [post-search user cost per unit of time X (time + additional time) ].

  • PDF

A Unit Touch Gesture Model of Performance Time Prediction for Mobile Devices

  • Kim, Damee;Myung, Rohae
    • 대한인간공학회지
    • /
    • 제35권4호
    • /
    • pp.277-291
    • /
    • 2016
  • Objective: The aim of this study is to propose a unit touch gesture model, which would be useful to predict the performance time on mobile devices. Background: When estimating usability based on Model-based Evaluation (MBE) in interfaces, the GOMS model measured 'operators' to predict the execution time in the desktop environment. Therefore, this study used the concept of operator in GOMS for touch gestures. Since the touch gestures are comprised of possible unit touch gestures, these unit touch gestures can predict to performance time with unit touch gestures on mobile devices. Method: In order to extract unit touch gestures, manual movements of subjects were recorded in the 120 fps with pixel coordinates. Touch gestures are classified with 'out of range', 'registration', 'continuation' and 'termination' of gesture. Results: As a results, six unit touch gestures were extracted, which are hold down (H), Release (R), Slip (S), Curved-stroke (Cs), Path-stroke (Ps) and Out of range (Or). The movement time predicted by the unit touch gesture model is not significantly different from the participants' execution time. The measured six unit touch gestures can predict movement time of undefined touch gestures like user-defined gestures. Conclusion: In conclusion, touch gestures could be subdivided into six unit touch gestures. Six unit touch gestures can explain almost all the current touch gestures including user-defined gestures. So, this model provided in this study has a high predictive power. The model presented in the study could be utilized to predict the performance time of touch gestures. Application: The unit touch gestures could be simply added up to predict the performance time without measuring the performance time of a new gesture.

정기보전 제도에서 응급수리를 고려한 대체품 수리정책에서의 비용분석 모델 (Cost Analysis Model with Minimal Repair of Spare Unit Repair Policy under Periodic Maintenance Policy)

  • 김재중
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권2호
    • /
    • pp.151-161
    • /
    • 2006
  • This article is concerned with cost analysis model in periodic maintenance policy. The repair policy is differently applied according as unit importance during an item being used and unit restoration during an item being failed. So in this paper the repair policy with minimal repair is considered as follow : as the occurrence of failure between minimal repair and periodic interval time, unit is replaced by a spare unit until the periodic maintenance time arrived. Then total expected cost per unit time is calculated according to scale parameter of failure distribution in a view of customer's. The total expected costs are included repair and usage cost : operating, fixed, minimal repair, periodic maintenance and spare unit cost. Numerical example is shown in which failure time of item has Erlang distribution.

  • PDF

정기보전 제도에서 응급수리를 고려한 신제품 수리정책에서의 비용분석 모델 (Cost Analysis Model with Minimal Repair of New Unit Repair Policy under Periodic Maintenance Policy)

  • 김재중
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제6권3호
    • /
    • pp.195-203
    • /
    • 2006
  • This paper deals with cost analysis model in periodic maintenance policy. The repair policy with minimal repair is considered as follow : as the occurrence of failure between minimal repair and periodic interval time, unit is replaced by a new unit before the periodic maintenance time comes. Then total expected cost per unit time is calculated according to time delta t in a view of customer's. The total expected costs are included repair and usage cost : operating, fixed, minimal repair, periodic maintenance and new unit expected cost. Numerical example is shown in which failure time of item has Normal distribution.

  • PDF

응급수리를 고려한 정기보전정책의 비용분석 (Cost Analysis for Periodic Maintenance Policy with Minimal Repair)

  • 김재중;김원중
    • 산업경영시스템학회지
    • /
    • 제18권34호
    • /
    • pp.139-146
    • /
    • 1995
  • This study is concerned with cost analysis in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Minimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a spate until the periodic time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to maintenance period and scale parameter of failure distribution. Total cost factors ate included operating, fixed, minimal repair, periodic maintenance and replacement cost Numerical example is shown in which failure time of system has erlang distribution.

  • PDF

보전비용요소를 고려한 정기보전정책의 비용분석모델 (Cost Analysis Model for Periodic Maintenance Policy with Maintenance Cost Factor)

  • 김재중;김원중
    • 산업경영시스템학회지
    • /
    • 제18권36호
    • /
    • pp.287-295
    • /
    • 1995
  • This paper is concerned with cost analysis model in periodic maintenance policy. Generally periodic maintenance policy in which item is repaired periodic interval times. And in the article minimal repair is considered. Mimimal repair means that if a unit fails, unit is instantaneously restored to same hazard rate curve as before failure. In the paper periodic maintenance policy with minimal repair is as follows; Operating unit is periodically replaced in periodic maintenance time, if a failure occurs between minimal repair and periodic maintenance time, unit is replaced by a new item until tile periodic maintenance time comes. Also unit undergoes minimal repair at failures in minimal-repair-for-failure interval. Then total expected cost per unit time is calculated according to scale parameter of failure distribution. Maintenance cost factors are included operating, fixed, minimal repair, periodic maintenance and new item replacement cost. Numerical example is shown in which failure time of system has weibull distribution.

  • PDF

단위 동작 모형에 따른 로봇 작업시간 측정법의 개발 (Development of robot work measurement by the unit motion model)

  • 권규식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.367-370
    • /
    • 1996
  • This study deals with the motion modeling by the unit motion of robots and the work measurement through classification of robot motions and standardization. The proposed approach is to scrutinize the Predetermined Time Standards(PTS) methods for measurement of manual tasks performed by people and the basic motions for accomplishing that tasks. And then, it constructs the unit motion models as subsets composed with the basic motions. It apply together with movements distance as a time variable, too. These results are used for the work measurements of robots by the unit motion models.

  • PDF

Real Time Processing을 위한 Image Processing Unit의 설계 (Design of Image Processing Unit for Real Time Processing)

  • 김진욱;김석태
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 1998년도 추계종합학술대회
    • /
    • pp.194-197
    • /
    • 1998
  • Image Processing은 Image Data가 대량이고 내재된 정보가 병렬로 연관성을 가진다는 측면에서 실시간 처리가 용이하지 알다. 본 연구에서는 High Speed Real Time Image Processing을 위한 IPU(Image Processing Unit)와 이를 구동하기 위한 High Speed Real Time image Processing Language인 IPASM(Image Processing Assembly)을 제안한다. 우선 IPU의 기본개념을 설명하고 IPU의 구현을 위한 IPLU(Image Processing Logic Unit)를 설계한다. 그 후 Window98환경에서 구동 가능한 IPASM Interpreter를 실제로 제작하여 IPU의 동작방식을 간접적으로 진단한다.

  • PDF

과학과의 핵심성취기준에 근거한 단위시간 수업전략 효과 (The effects of learning strategies unit time based core achievement standard of science)

  • 이용섭;김순식
    • 대한지구과학교육학회지
    • /
    • 제7권2호
    • /
    • pp.169-179
    • /
    • 2014
  • The purpose of this study is to research about the effects on improvement academic achievement of students based on the core learning standards of science. The researcher selected experimenter and started this study as a graduate student who is majoring in science education, experimenter chose to study 48 Sixth graders in elementary schools in B city for research group(24 students), Comparison group(24 students). The study was conducted from March to the end of July 2014. The teacher who is doing activity of professor in research group and the comparison group is science education specialist. Researcher and experimenter frequently exchange their opinions for control variables of teacher. The results are as follows. First, based on unit time strategies based on core achievement standards classes are effective in improving students' academic achievement. Elementary school teacher has difficulty in teaching for all subjects based on unit time strategies. Second, based on unit time strategies based on core achievement standards classes showed high level of satisfaction in perception of students. Thus it can be seen that teaching strategies of unit time based on the core achievement standards is effective to academic achievement improvement. The proposal for further study based on the results is as follows. First, research is needed to study the teaching methods that have practical and theoretical study time and lesson application opportunity for teaching strategies of curriculum unit time. Second, experimental studies that using strategies of unit time based on the core achievement standards are needed about learning method that can be applied in a variety of subjects.

IMPLEMENTATION OF REAL TIME RELP VOCODER ON THE TMS320C25 DSP CHIP

  • Kwon, Kee-Hyeon;Chong, Jong-Wha
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.957-962
    • /
    • 1994
  • Real-time RELP vocoder is implemented on the TMS320C25 DSP chip. The implemented system is IBM-PC add-on board and composed of analog in/out unit, DSP unit, memoy unit, IBM-PC interface unit and its supporting assembly software. Speech analyzer and synthesizer is implimented by DSP assembly software. Speech parameters such as LPC coefficients, base-band residuals, and signal gains is extracted by autocorrelation method and inverse filter and synthesized by spectral folding method and direct form synthesis filter in this board. And then, real-time RELP vocoder with 9.6Kbps is simulated by down-loading method in the DSP program RAM.

  • PDF