The unit fraction is the basis of the fraction concept and has a role of starting point for understanding the fraction concept. In this study, in terms of the importance of the unit fraction, the teaching methods of the fraction based on the unit fraction were explored. First, it was examined the emerging contexts of the fraction concept and the diversity of its meanings. Second, it was investigated the contents of the unit fraction in Korean and CCSSM's curriculum and textbooks. Lastly, I suggested the teaching methods using the unit fraction in terms of the introduction of fraction, fractional operations, and teaching of problem solving based on the unit fraction.
Despite the significance of fraction in elementary mathematics education, it is not easy to teach it meaningfully in connection with real life in Korea. This study aims to investigate and analyze 3rd grade students' understanding on unit fraction concepts and on comparison of unit fractions and to identify the parts which need to be supplemented in relation to unit fraction. For these purposes, I reviewed previous studies and extracted chapters which cover unit fractions in elementary mathematics textbooks based on 2009 revised curriculums and analyzed teaching contexts and visual representations of unit fractions. From this point of view, I constructed a test which consists of three problems based on Chval et al(2013) to investigate students' understanding on unit fraction. To apply this test, I selected forty-one 3rd grade students and examined that students' aspects of understanding on unit fraction. The results were analyzed both qualitatively and quantitatively. In this study, I present the analysis results and provide implications and some didactical suggestions for teaching contexts and visual representations of unit fraction based on the discussion.
In this paper, we investigate distribution strategies in the Egyptian fraction, and through this, we examine the distribution strategies of (fraction)÷(fraction) and then provide some educational implications. The (natural number)÷(natural number) of the sharing situation has the meaning of 'share' per unit, which can be seen as a situation where the unit ratio is determined. These concepts can also naturally be extended to the case of (fraction)÷(fraction) by some problem posing situations. That is to say, the case of (fraction)÷(fraction) can be deduced the case (natural number)÷(natural number) by the re-statement of the problem.
Based on the current curriculum, students learn the concept of fraction in the 3rd grade for the first time. At that time, fraction is introduced as whole-part relationship. But as the idea of fraction expands to improper fraction and so on, fraction as measurement would be naturally appeared. In that situation where fraction as whole-part relationship and fraction as measurement are dealt together, it is necessary for students to get experiences of understanding and exploring unit and whole adequately in order to fully understand the concept of fractions. Therefore, the purpose of this study is to analyze how to deal with unit fractions, how to implement activities to find the standard of reference from the part, and what visual representations were used to help students to understand the concept of fractions in elementary mathematics textbooks from the 7th to the 2015 revised curriculum. And we analyzed 60 3rd graders' understanding of finding and drawing the whole by looking at the part. Several didactical implications for teaching the concept of fractions were derived from the discussion according to the analysis results.
The purpose of this study is to justify the fraction division algorithm in elementary mathematics by applying the definition of natural number division to fraction division. First, we studied the contents which need to be taken into consideration in teaching fraction division in elementary mathematics and suggested the criteria. Based on this research, we examined whether the previous methods which are used to derive the standard algorithm are appropriate for the course of introducing the fraction division. Next, we defined division in fraction and suggested the unit-circle partition model and the square partition model which can visualize the definition. Finally, we confirmed that the standard algorithm of fraction division in both partition and measurement is naturally derived through these models.
The purpose of this study was to explore in detail students' understanding of fraction as quotient. A total of 158 sixth graders in 6 elementary schools were surveyed by 8 tasks in relation to fraction as quotient. As a result, students used various partitioning strategies to solve the given sharing tasks such as partitioning the singleton unit, the composite unit, or the whole unit of the dividend. They also used incorrect partitioning strategies that were not appropriate to the given context. Students' partitioning strategies and performance of fraction as quotient varied depending on the given contexts and models. This study suggests that students should have rich experience to partition various units and reinterpret the context based on the singleton unit of the dividend.
This study analyzed the $6^{th}$ graders' constructions about fraction operations and schemes and figured out the relationships quantitatively between operations and schemes through the written test of 432 students. The results of this study showed that most of students could do partitioning operation well, however, there were many students who had difficulties on iterating operation. There were more students who constructed partitioning operation prior to iterating operation than the opposite. The rate of students who constructed high schemes was lower than that of students who constructed low schemes according to the hierarchy of fraction schemes. Especially, there were many students who construct partitive unit fraction scheme but not partitive fraction scheme, because they could compose unit fraction but not do iterating it. And there were the high correlations between fraction operations and schemes. Given these result, this paper suggests implications about the teaching and learning of fraction.
The fraction concept consists of various meanings and is one of the more abstract and difficult in elementary school mathematics. This study intends to analyze the fraction concept from historical and psychological viewpoints, to examine the current elementary mathematics textbooks by these viewpoints and to seek the direction for improvement of it. Basic ideas about fraction are the partitioning - the dividing of a quantity into subparts of equal size - and about the part-whole relation. So these ideas are heavily emphasized in current textbooks. However, from the learner's point of view, situations related to different meanings of fraction concept draw qualitatively different response from students. So all the other meanings of fraction concept should be systematically represented in elementary mathematics textbooks. Especially based on historico-genetic principle, the current textbooks need the emphasis on the fraction as a measure and on constructing fraction concept by unit fraction as a unit.
Journal of Elementary Mathematics Education in Korea
/
v.15
no.1
/
pp.199-219
/
2011
In this thesis, we designed a experimental learning-teaching plan of 'decimal fraction concept' at the 4-th grade level. We rest our plan on two basic premises. One is the fact that a essential concept of decimal fraction is 'polynomial of which indeterminate is 10', and another is the fact that the origin of decimal fraction is successive measurement activities which improving accuracy through decimal partition of measuring unit. The main features of our experimental learning-teaching plan is as follows. Firstly, students can experience a operation which generate decimal unit system through decimal partitioning of measuring unit. Secondly, the decimal fraction expansion will be initially introduced and the complete representation of decimal fraction according to positional notation will follow. Thirdly, such various interpretations of decimal fraction as 3.751m, 3m+7dm+5cm+1mm, $(3+\frac{7}{10}+\frac{5}{100}+\frac{1}{1000})m$ and $\frac{3751}{1000}m$ will be handled. Fourthly, decimal fraction will not be introduced with 'unit decimal fraction' such as 0.1, 0.01, 0.001, ${\cdots}$ but with 'natural number+decimal fraction' such as 2.345. Fifthly, we arranged a numeration activity ruled by random unit system previous to formal representation ruled by decimal positional notation. A experimental learning-teaching plan which presented in this thesis must be examined through teaching experiment. It is necessary to successive research for this task.
The purpose of this study is to explore how units-coordination ability is related to understanding fraction concepts. For this purpose, a teaching experiment was conducted with one fourth grade student, Eunseo for four months(2019.3. ~ 2019.6.). We analyzed in details how Eunseo's units-coordinating operations related to her understanding of fraction changed during the teaching experiment. At an early stage, Eunseo with a partitive fraction scheme recognized fractions as another kind of natural numbers by manipulating fractions within a two-levels-of-units structure. As she simultaneously recognized proper fraction and a referent whole unit as a multiple of the unit fraction, she became to distinguish fractions from natural numbers in manipulating proper fractions. Eunseo with a reversible partitive fraction scheme constructed a natural number greater than 1, as having an interiorized three-levels-of-units structure and established an improper fraction with three levels of units in activity. Based on the results of this study, conclusions and pedagogical implications were presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.