• 제목/요약/키워드: uniformly smooth Banach spaces

검색결과 33건 처리시간 0.016초

SENSITIVITY ANALYSIS FOR A NEW SYSTEM OF VARIATIONAL INEQUALITIES

  • Jeong, Jae-Ug
    • 대한수학회논문집
    • /
    • 제25권3호
    • /
    • pp.427-441
    • /
    • 2010
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of generalized parametric multi-valued variational inclusions with (A, $\eta$)-accretive mappings in q-uniformly smooth Banach spaces. The present results improve and extend many known results in the literature.

STRONG CONVERGENCE THEOREMS BY VISCOSITY APPROXIMATION METHODS FOR ACCRETIVE MAPPINGS AND NONEXPANSIVE MAPPINGS

  • Chang, Shih-Sen;Lee, H.W. Joseph;Chan, Chi Kin
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.59-68
    • /
    • 2009
  • In this paper we present an iterative scheme for finding a common element of the set of zero points of accretive mappings and the set of fixed points of nonexpansive mappings in Banach spaces. By using viscosity approximation methods and under suitable conditions, some strong convergence theorems for approximating to this common elements are proved. The results presented in the paper improve and extend the corresponding results of Kim and Xu [Nonlinear Anal. TMA 61 (2005), 51-60], Xu [J. Math. Anal. Appl., 314 (2006), 631-643] and some others.

  • PDF

Strong Convergence Theorems by Modified Four Step Iterative Scheme with Errors for Three Nonexpansive Mappings

  • JHADE, PANKAJ KUMAR;SALUJA, AMARJEET SINGH
    • Kyungpook Mathematical Journal
    • /
    • 제55권3호
    • /
    • pp.667-678
    • /
    • 2015
  • The aim of this paper is to prove strong convergence theorem by a modified three step iterative process with errors for three nonexpansive mappings in the frame work of uniformly smooth Banach spaces. The main feature of this scheme is that its special cases can handle both strong convergence like Halpern type and weak convergence like Ishikawa type iteration schemes. Our result extend and generalize the result of S. H. Khan, Kim and Xu and many other authors.