• 제목/요약/키워드: uniaxial strain

검색결과 507건 처리시간 0.024초

일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화 (Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads)

  • 이은선;고태식;이치승
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.688-694
    • /
    • 2017
  • Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

AZ31 마그네슘 합금판재의 소성변형특성 (Plastic Deformation Characteristic of AZ31 Magnesium Alloy Sheet)

  • 박진기;;유봉선;김영석
    • 소성∙가공
    • /
    • 제14권6호
    • /
    • pp.520-526
    • /
    • 2005
  • In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile tests of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile tests were performed until $7{\%}$ of engineering strain. Lankford values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci were calculated by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. In this study, Hill's 1979 yield function for the case of m=2.8 and Logan-Hosford yield function for the case of M=8 give good agreements with experimental results. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5{\%}$ of equivalent strain at biaxial tensile test.

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • 제7권2호
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

산화아연 나노와이어의 압전거동에 대한 분석 (Finite Element Analysis of the Piezoelectric Behavior of ZnO Nanowires)

  • 이웅
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.671-679
    • /
    • 2018
  • Finite element analyses are carried out to understand the piezoelectric behaviors of ZnO nanowires. Three different types of ZnO nanowires, with aspect ratios of 1:2. 1:31, and 1:57, are analyzed for uniaxial compression, pure bending, and buckling. Under the uniaxial compression with a strain of $1.0{\times}10^{-4}$ as the reference state, it is predicted that all three types of nanowires develop the same magnitude of the piezoelectric fields, which suggests that longer nanowires exhibit higher piezoelectric potential. However, this prediction is not in agreement with the experimental results previously reported in the literature. Such discrepancy is understood when the piezoelectric behaviors under bending and buckling are considered. When only the strain field due to bending is present in bending or buckling, the antisymmetric nature of the through-thickness stain distribution indicates that two piezoelectric fields, the same in magnitude and opposite in sign, develop along the thickness direction, which cancels each other out, resulting in a zero net piezoelectric field. Once additional strain contribution due to axial deformation is superposed on the bending, such field cancelling is compensated for due to the axial component of the piezoelectric field. Such numerical predictions seem to explain the reported experimental results while providing a guideline for the design of nanowire-based piezoelectric devices.

General stress-strain model for concrete or masonry response under uniaxial cyclic compression

  • La Mendola, Lidia;Papia, Maurizio
    • Structural Engineering and Mechanics
    • /
    • 제14권4호
    • /
    • pp.435-454
    • /
    • 2002
  • The paper proposes analytical forms able to represent with very good approximation the constitutive law experimentally deducible by means of uniaxial cyclic compressive tests on material having softening post-peak behaviour in compression and negligible tensile strength. The envelope, unloading and reloading curves characterizing the proposed model adequately approach structural responses corresponding to different levels of nonlinearity and ductility, requiring a not very high number of parameters to be calibrated experimentally. The reliability of the model is shown by comparing the results that it is able to provide with the ones analytically deduced from two reference models (one for concrete, another for masonry) available in the literature, and with experimental results obtained by the authors in the framework of a research in progress.

일축 압축 실험을 통한 DSCT 부재의 구속 콘크리트에 대한 실험적 연구 (Experimental Study for Confined Concrete of Double Skinned Composite Tubular Columns by Uniaxial Compression Test)

  • 이정화;한상윤;원덕희;강영종
    • 복합신소재구조학회 논문집
    • /
    • 제4권3호
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, uniaxial compression tests were performed to investigates the stress-strain relations of Double Skinned Composite Tubular Columns reinforced with steel tube. The confined concrete has been known as the strength of concrete increases significantly. Specimens reinforced with outer and inner steel tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in steel tubes, 8 specimens with different thickness of tube, hollowness ratio and concrete strength were tested and compared with other researcher's concrete material model.

경량혼합토의 도로 노상층 재료 사용 가능성 평가 (Evaluation of Lightweight Soil as a Subgrade Material)

  • 박대욱;보베이트하이
    • 한국도로학회논문집
    • /
    • 제15권5호
    • /
    • pp.57-64
    • /
    • 2013
  • PURPOSES : It is to evaluate lightweight soil as a subgrade material based on mechanical tests and calculation of pavement performance. METHODS : In this research, various contents of cement and air foam are used to make lightweight soil using wasted dredged soil. Uniaxial compressive strength test is conducted to evaluate strength of 7 and 28 day cured specimens. Secant modulus was calculated based on the stress and strain relationship of uniaxial compressive strength test. Resilient modulus test was measured using by repeated triaxial compression test. The measured resilient modulus was used in layered elastic program to predict fatigue and rutting life at a given pavement structure. RESULTS : Uniaxial compressive strength increases as cement content increases but decrease as air foam content increases. Resilient modulus also increases as cement content increases and decrease as air foam content decrease. CONCLUSIONS : It is concluded that dredge clay soil can be used as subgrade layer material using by lightweight treated soil method.

Rate-sensitive analysis of framed structures part II: implementation and application to steel and R/C frames

  • Fang, Q.;Izzuddin, B.A.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.239-256
    • /
    • 1997
  • The companion paper presents a new three-parameter model for the uniaxial rate-sensitive material response, which is based on a bilinear static stress-strain relationship with kinematic strain-hardening. This paper extends the proposed model to trilinear static stress-strain relationships for steel and concrete, and discusses the implementation of the new models within an incremental-iterative solution procedure. For steel, the three-parameter rate-function is employed with a trilinear static stress-strain relationship, which allows the utilisation of different levels of rate-sensitivity for the plastic plateau and strain-hardening ranges. For concrete, on the other hand, two trilinear stress-strain relationships are used for tension and compression, where rate-sensitivity is accounted for in the strain-softening range. Both models have been implemented within the nonlinear analysis program ADAPTIC, which is used herein to provide verification for the models, and to demonstrate their applicability to the rate-sensitive analysis of steel and reinforced concrete structures.

Poisson's ratios of fabric materials in use for large-span membrane structures

  • Jianhui Hu;Wujun Chen;Chengjun Gao;Yibei Zhang;Yonglin Chen;Pujin Wang
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.543-549
    • /
    • 2024
  • The utilization of the fabric materials for lightweight building structures has attracted considerable attention due to the multiple functions and high strength-to-weight ratio. The mechanical properties of the fabric materials evolve with the loading cycle, especially for the Poisson's ratio that requires the full cyclic strain to determine the accurate values. The digital image correlation method has been justified but needs to meet the flexibility and complexity requirements of the fabric materials. This paper thus proposes a modified digital image correlation method to quantify the Poisson's ratio of fabric materials. To obtain the accurate Poisson's ratio of fabric materials in the cyclic experiments using non-contact measuring method, a speckle generation of the digital image correlation method is implemented to obtain the strain distribution and strain characteristics. The uniaxial cyclic experiments for the fabric materials are carried out in the warp, weft and 45° directions. The digital image correlation photos are taken when the material properties become stable in the cyclic loading. The results show that the strain distributions are non-uniform and dependent on the specimen directions. The reliable Poisson's ratios of the fabric materials in the warp, weft and 45° directions are 0.016, 1.2 and 2.6. The strain asymmetry at the maximum strain position is related with the weaving architecture. These observations and results are indispensable to understand the Poisson's ratios of fabric materials and to guide the proper analysis of the large-span membrane structures.

변형률속도와 온도에 따른 SPF8090 Al-Li 초소성 재료의 물성 특성 (Characterization of superplastic material SPF8090 AI-Li with the variation of the strain rate and the temperature)

  • 이기석;허훈
    • 소성∙가공
    • /
    • 제6권5호
    • /
    • pp.425-434
    • /
    • 1997
  • A superplastic material, aluminum-lithium alloy 8090, was examined with uniaxial tensile tests to investigate its thermomechanical behavior. The tests were carried out at the strain rate ranging from $2X10^4 to 1X10^2$ and at the temperature from 48$0^{\circ}C$ to 54$0^{\circ}C$. The experiments produced force-dis-placement curves which were converted to stress-strain curves. From the curves, the optimum conditions of superplastic forming were obtained by deteriming the strain rate sensitivety, the optimum strain rate, and the strength coefficient for various forming temperatures.

  • PDF