DOI QR코드

DOI QR Code

Plastic Deformation Characteristic of AZ31 Magnesium Alloy Sheet

AZ31 마그네슘 합금판재의 소성변형특성

  • 박진기 (경북대학교 기계공학부) ;
  • ;
  • 유봉선 (한국기계연구원 재료연구부 경량재료그룹) ;
  • 김영석 (경북대학교 기계공학부)
  • Published : 2005.09.01

Abstract

In recent years, there has been a growth of the manufacture and application of magnesium products because of its small specific gravity as well as its relatively high strength. However, there are so many studies to assure good formability because magnesium sheet alloy is difficult to form. In this study, uniaxial tensile and biaxial tensile tests of AZ31 magnesium sheet alloy with thickness of 1.2mm were performed at room temperature. Uniaxial tensile tests were performed until $7{\%}$ of engineering strain. Lankford values and stress-strain curve were obtained. Biaxial tensile tests with cruciform specimen were performed until the breakdown of the specimen occurs. The yield loci were calculated by application of plastic work theory. The results are compared with the theoretical predictions based on the Hill and Logan-Hosford model. In this study, Hill's 1979 yield function for the case of m=2.8 and Logan-Hosford yield function for the case of M=8 give good agreements with experimental results. However, next study will be performed at warm-temperature because the specimens are broken under the $0.5{\%}$ of equivalent strain at biaxial tensile test.

Keywords

References

  1. 김영석, 1992, 알루미늄 판재성형기술의 현황과 과제, 한국자동차공학회지, Vol. 14, No. 1, pp. 3-12
  2. Y. S. Kim, C. Kim, S. Y. Lee, S. Y. Won, S. M. Hwang, 2003, Forming limits for anisotropic sheet metals, JSME Int. J., Vol. 46A, No.4, pp. 627-634
  3. D. Li, A. Ghosh, 2003, Tensile deformation behavior of aluminum alloys at warm forming temperatures, Mat. Sci. Eng., Vol. 352A, pp. 279-286
  4. Nahed A. El-Mahallawy, Mohamed A. Taha, Engenius Pokora, and Friedrich Klein, 1998, On the influence of process variables on the thermal conditions and properties of high pressure die-cast magnesium alloys, J. Mat. Pro. Tech., Vol. 73, pp. 125-138 https://doi.org/10.1016/S0924-0136(97)00221-5
  5. B.H. Hu, K.K. Tong, X.P. Niu, and I. Pinwill, 2000, Design and optimization of runner and gating systems for the die casting of thin-walled magnesium telecommunication parts through numerical simulation, J. Mat. Pro. Tech., Vol. 105, pp.128-133 https://doi.org/10.1016/S0924-0136(00)00546-X
  6. 김수현, 임창동, 유봉선, 서영명, 정인상, 2004, 열간 압연한 AZ31 마그네슘 합금 판재의 미세조직 발달에 관한 연구, 제 5 회 압연심포지엄, 한국소성가공학회, pp. 63-71
  7. 이영선, 김민철, 권용남, 이정환, 2004, Mg 합금 판재 냉간 성형품의 탄성회복량 예측, 한국소성가공학회 2004 년도 춘계학술대회 논문집, pp. 43-46
  8. 원성연, 오상균, Kozo Osakada, 박진기, 김영석, 2004, AZ31 마그네슘 합금 판재의 기계적 특성 평가(1), 한국소성가공학회 2004 년도 춘계 학술대회 논문집, pp. 53-56
  9. L. Lin, Z. Liu, L. Chen, T. Liu, S. Wu, 2004, Microstructure evolution and low temperature superplasticity of ZK40 magnesium alloy subjected to ECAP, Met. Mat. Int., Vol. 10, No. 6, pp. 501-506 https://doi.org/10.1007/BF03027410
  10. 김영석, 2003, 소성역학, 시그마프레스
  11. R. Hill, 1950, The Mathematical Theory of Plasticity, Oxford University Press, Oxford, UK
  12. R. W. Logan, and W. F. Hosford, 1980, Upper-bound anisotropic yield locus calculations assuming<111> pencil glide, Int. J. Mech. Sci., Vol. 22-7, pp. 419-430
  13. R. Hill, 1979, Theoretical plasticity of textured aggregates, Proc. Camb. Phil. Soc., Vol. 85, pp. 179-191
  14. 김영석, 원성연, 박진기, 신효동, 2005, 알루미늄(3004-O)판재의 기계적 특성 분석

Cited by

  1. State of Art for Biaxial Tensile Test Systems vol.20, pp.3, 2011, https://doi.org/10.5228/KSTP.2011.20.3.222
  2. Study of Forming Limit for Rotational Incremental Sheet Forming of Magnesium Alloy Sheet vol.41, pp.1, 2010, https://doi.org/10.1007/s11661-009-0043-7
  3. Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures vol.24, pp.6, 2015, https://doi.org/10.5228/KSTP.24.6.405