DOI QR코드

DOI QR Code

Finite Element Analysis of the Piezoelectric Behavior of ZnO Nanowires

산화아연 나노와이어의 압전거동에 대한 분석

  • Lee, Woong (School of Materials Science and Engineering, Changwon National University)
  • 이웅 (창원대학교 신소재공학부)
  • Received : 2018.10.05
  • Accepted : 2018.10.26
  • Published : 2018.11.27

Abstract

Finite element analyses are carried out to understand the piezoelectric behaviors of ZnO nanowires. Three different types of ZnO nanowires, with aspect ratios of 1:2. 1:31, and 1:57, are analyzed for uniaxial compression, pure bending, and buckling. Under the uniaxial compression with a strain of $1.0{\times}10^{-4}$ as the reference state, it is predicted that all three types of nanowires develop the same magnitude of the piezoelectric fields, which suggests that longer nanowires exhibit higher piezoelectric potential. However, this prediction is not in agreement with the experimental results previously reported in the literature. Such discrepancy is understood when the piezoelectric behaviors under bending and buckling are considered. When only the strain field due to bending is present in bending or buckling, the antisymmetric nature of the through-thickness stain distribution indicates that two piezoelectric fields, the same in magnitude and opposite in sign, develop along the thickness direction, which cancels each other out, resulting in a zero net piezoelectric field. Once additional strain contribution due to axial deformation is superposed on the bending, such field cancelling is compensated for due to the axial component of the piezoelectric field. Such numerical predictions seem to explain the reported experimental results while providing a guideline for the design of nanowire-based piezoelectric devices.

Keywords

References

  1. A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501
  2. C. W. Litton, D. C. Reynolds and T. C. Collins, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, 1st ed., p. 265, John Wiley & Sons, New York (2011).
  3. U. Ozgur, D. Hofstetter and H. Morkoc, Proc. IEEE, 98, 1255 (2010).
  4. A. B. Djurisic, A. M. C. Ng and X. Y. Chen, Prog. Quant. Electr., 34, 191 (2010). https://doi.org/10.1016/j.pquantelec.2010.04.001
  5. S. Bagga, J. Akhtar and S. Mishra, AIP Conf. Proc., 1989, 020004 (2018).
  6. R. Zhu and R. Yang, Synthesis and Characterization of Piezotronic Materials for Application in Strain/Stress Sensing, p. 39, Springer Nature, Cham, Switzerland (2018).
  7. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, Nat. Nanotechnol., 5, 366 (2010). https://doi.org/10.1038/nnano.2010.46
  8. H. J. Lee, S. Y. Chung, Y. S. Kim and T. I. Lee, Nano Energy, 38, 232 (2017). https://doi.org/10.1016/j.nanoen.2017.05.053
  9. B. Kumar, K. Y. Lee, H. K. Park, S. J. Chae, Y. H. Lee and S. W. Kim, ACS Nano, 5, 4197 (2011). https://doi.org/10.1021/nn200942s
  10. Y. Hu, L. Lin, Y. Zhang and Z. L. Wang, Adv. Mater., 24, 110 (2012). https://doi.org/10.1002/adma.201103727
  11. L. Lin, Y. Hu, C. Xu, Y. Zhang, R. Zhang, X. Wen and Z. L. Wang, Nano Energy, 2, 75 (2013). https://doi.org/10.1016/j.nanoen.2012.07.019
  12. S. Lee, S. H. Bae, L. Lin, Y. Yang, C. Park, S. W. Kim, S. N. Cha, H. Kim, Y. J. Park and Z. L. Wang, Adv. Funct. Mater., 23, 2445 (2013). https://doi.org/10.1002/adfm.201202867
  13. C. Liu, A. Yu, M. Peng, M. Song, W. Liu, Y. Zhang and J. Zhai, J. Phys. Chem. C, 120, 6971 (2016). https://doi.org/10.1021/acs.jpcc.6b00069
  14. X. Li, Y. Chen, A. Kumar, A. Mahmoud, J. A. Nychka and H. J. Chung, ACS Appl. Mater. Interfaces, 7, 20753 (2015). https://doi.org/10.1021/acsami.5b05702
  15. Y. Zhang, C. Liu, J. Liu, J. Xiong, J. Liu, K. Zhang, Y. Liu, M. Peng, A. Yu, A. Zhang, Y. Zhang, Z. Wang, J. Zhai and Z. L. Wang, ACS Appl. Mater. Interfaces, 8, 1381 (2016). https://doi.org/10.1021/acsami.5b10345
  16. M. Son, H. Jang, M.-S. Lee, T.-H. Yoon, B. H. Lee, W. Lee and M.-H. Ham, Adv. Mater. Technol., 3, 1700355 (2018). https://doi.org/10.1002/admt.201700355
  17. L. Serairi, D. Yu and Y. Leprince-Wang, Phys. Status Solidi C, 13, 1 (2016).
  18. A. Asthana, H. A. Ardakani, Y. K. Yap and R. S. Yassar, J. Mater. Chem. C, 2, 3995 (2014). https://doi.org/10.1039/C4TC00032C
  19. Y. Gao and Z. L. Wang, Nano Lett., 7, 2499 (2007). https://doi.org/10.1021/nl071310j
  20. C. Majidi, M. Haataja and D. J. Srolovitz, Smart Mater. Struct., 19, 055027 (2010). https://doi.org/10.1088/0964-1726/19/5/055027
  21. ABAQUS 2017, Dassault Systemes, Velizy-Villacoublay, France (2016).
  22. M. de Jong, W. Chen, H. Geerlings, M. Asta and K. A. Persson, Sci. Data, 2, 150053 (2015). https://doi.org/10.1038/sdata.2015.53
  23. W. H. H. Oo, L. V. Saraf, M. H. Engelhard, V. Shuttanandan, L. Bergman, J. Huso, and M. D. McCluskey, J. Appl. Phys., 105, 013715 (2009). https://doi.org/10.1063/1.3063730
  24. K. Nakamura, S. Higuchi and T. Ohnuma, J. Appl. Phys., 119, 114102 (2016). https://doi.org/10.1063/1.4943937
  25. E. J. Hearn, Mechanics of Materials Volume 2: An Introduction to The Mechanics of Elastic and Plastic Deformation of Solids and Structural Components, 2nd ed., p. 457, Butterworth-Heinemann, Oxford, England (1985).