• Title/Summary/Keyword: undrained cyclic test

Search Result 34, Processing Time 0.024 seconds

Characteristics of Cyclic Shear Stress Ratio by Silt Content for Nak-Dong River Sand (낙동강 모래의 실트함유량 변화에 따른 반복전단응력비 특성)

  • Kim, Young-Su;Kim, Dae-Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.277-285
    • /
    • 2009
  • A series of undrained cyclic triaxial tests were carried out to investigate the cyclic shear stress strength characteristics of sands with respect to the silt content. Silty sand was collected around the basin of Nak-Dong River and remolded in laboratory with the range of silt content 0~50% in sand located. As results, with the change of silt content cyclic shear stress ratio (CSR) at N=10 showed the maximum value at 5% and the minimum at 20% in all relative density. The development tendency of the pore water pressure analyzed by the relationship cyclic ratio and pore water pressure ratio is unrelated the change of CSR varying silt content. Comparing the results of the void ratio and skeleton void ratio after consolidation, CSR varying silt content was much affected by skeleton void ratio which is known to affect shear behavior of silty sand.

Development of Modified Disturbed State Concept Model for Liquefaction Analysis (액상화 해석을 위한 수정교란상태개념 모델 개발)

  • Park, Keun-Bo;Choi, Jae-Soon;Park, Inn-Joon;Kim, Ki-Poong;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.35-51
    • /
    • 2008
  • In this paper, the application of the DSC model to the analysis of liquefaction potential is examined through experimental and analytical investigations. For more realistic description of dynamic responses of saturated sands, the DSC model was modified based on the dynamic effective stress path and excess pore pressure development. Both static and cyclic undrained triaxial tests were performed for sands with different relative densities and confining stresses. Based on test results, a classification of liquefaction phases in terms of the dynamic effective stress path and the excess pore pressure development was proposed and adopted into the modified DSC model. The proposed methods using the original and modified DSC models were compared with examples with different relative densities and confining stresses. Based on the comparisons between the predicted results using the original and modified DSC models and experimental data, the parameters required to define the model were simplified. It was also found that modified model more accurately simulate initial liquefaction and dynamic responses of soil under cyclic undrained triaxial tests.

A Study on the Evaluation of Liquefaction of Sandy Soils by the Cyclic Triaxial Compression Test (反復三軸壓縮試驗에 의한 砂質土의 液狀化 評價에 관한 硏究)

  • Koh, Jae-Man;Doh, Duk-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.3
    • /
    • pp.51-62
    • /
    • 1991
  • A comprehensive laboratory investigation of the liquefaction characteristics of Jumunjin standard sand. Seoul sand and Hongsung sand was peformed by the undrained cyclic triaxial compression test under different relative densities, confining pressures and cyclic deviator stresses. The results obtained are as follows ; 1. Liquefaction potential was dominated by the stress ratio at a given number of cycle. That is, the number of cycle required to cause initial liquefaction became samller as the stress ratio increased. 2. Liquefaction potential of a sand was infliuenced by initial relative density or void ratio. Under a given relative density. liquefaction potential of Jumunjin standard sand and Seoul sand was smaller than that of Hongsung sand. 3. The pore pressure ratio of Hongsung sand was the smallest three under a given relative density and stress ratio, and it showed higher value when the cyclic stress and the shear strain were high. 4. An excessive pore pressure ratio not found when initial shear was smaller than 0.01%, and the pore pressure ratio started to increase when initial shear became greater than 0.01%. 5. Soil texture is an important factor to cause liquefaction, and liquefaction potential decreased a the mean grain size decreased. however the sand having fine grain such as Hongsung sand showed somewhat higher liquefaction potential. 6. Based on the analysis of the specimens whose number of the cycles to cause liquefaction was 8~12, it was found that the relationship between density and stress ratio was linear. The curves for Hongsung sand was steeper than the other. 7. From the above results and the method suggested by Seed-Idriss, it may be considered that the damages by Hongsung earthquake was not directly caused by liquefaction.

  • PDF

Evaluation of the Numerical Liquefaction Model Behavior with Drainage Condition (배수조건에 따른 액상화 수치모델의 거동평가)

  • Lee, Jin-Sun;Kim, Seong-Nam;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.63-74
    • /
    • 2019
  • Numerical liquefaction model and response history analysis procedure are verified based on dynamic centrifuge test results. The test was a part of the Liquefaction Experiments Analysis Project (LEAP). The model ground was formed inside of rigid box by using the submerged Ottawa F65 sand with a relative density of 55% and 5° of surface inclination. A tapered sinusoidal wave with a frequency of 1 Hz was applied to the base of the model box. Numerical analyses were performed by two dimensional finite difference method in prototype scale. The soil is modeled to show hysteretic behavior before shear failure, and Mohr-Coulomb model is applied for shear failure criterion. Byrne's liquefaction model was applied to track the changes in pore pressure due to cyclic loading after static equilibrium. In order to find an appropriate flow condition for the liquefaction analysis, numerical analyses were performed both in drained and undrained condition. The numerical analyses performed under the undrained condition showed good agreement with the centrifuge test results.

Liquifaction Characteristics of Saemangeum Dredged Sand Depending on Relative Density (상대밀도의 변화에 따른 새만금준설토의 액상화 특성)

  • Kim, Yoo-Seong;Seo, Se-Gwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • In reclaimed loose sandy layer with dredged soil, liquefaction by the small scale earthquake coud be occurred easily. A study has been carried out to investigate the Liquefaction characteristic on Saemangeum dredged sandy soil, and compared with other results from the literature investigation. A series of undrained cyclic triaxial compression tests were performed on dredged sandy soil of Seamangeum area. The tests were performed at the three different initial relative densities(namely 30%, 50%, 70%), different cyclic stress ratio and different consolidation stress condition. The results of this study showed that cyclic stresses (${\sigma}_d$) increased linearly with increase of consolidation ratio, but the stress ratios (${\sigma}_d/2{\sigma}^{\prime}{_c}$) were almost same. The stress ratios were increased almost linearly with increase of relative density. Compared with other sandy soil, Saemangeum dredged sandy soil showed relatively weak liquifaction characteristics.

  • PDF

Deformation Characteristics of Non-liquefied, Reconstituted, Weathered Residual Soils due to the Cyclic Loading (반복재하에 의한 미액상화 재성형 풍화토의 변형 특성)

  • Choi Yeon-Su;Yune Chan-Young;Jang Eui-Ryong;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.41-49
    • /
    • 2006
  • This paper deals with development and dissipation of excess pore pressure induced by the cyclic load. Cyclic triaxial tests on reconstituted samples of weathered residual soils, which were widely used as construction materials in Korea, were performed. Test results showed that excess pore pressures developed under undrained condition increased with the increase of cyclic loads and confining pressures. And a new concept based on modified excess pore pressure ratio (MEPPR) was proposed for simply estimating excess pore pressures in terms of the number of cyclic load, irrespective of cyclic loads and confining pressures. Also, it was proposed that excess pore pressure ratio (EPPR) could be effectively utilized to estimate volumetric strains during dissipation which decreased as confining pressures increased. Consequently, concept and method to effectively estimate settlements under non-liquefied condition, induced by dynamic loads such as earthquake loads were evaluated based on laboratory test results for reconstituted weathered residual soils.

Variation of Undrained Shear Behavior with Consolidation Stress Ratio of Nakdong River Sand (압밀응력비에 따른 낙동강모래의 비배수전단거통 특성)

  • 김영수;정성관;송준혁;정동길
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.83-93
    • /
    • 2003
  • This research, in order to study the effects of initial shear stress of anisotropically consolidated sand that has 0.558% fines, performed several undrained static and dynamic triaxial test. To simulate the real field conditions, loose and dense samples were prepared. Besides, the cyclic shear strength of Nakdong River sand under various combinations of initial static shear stress, stress path, pore water pressure and residual strength relationship was studied. By using Bolton's theory, peak internal friction angle at failure which has considerable effects on the relative density and mean effective stress was determined. In p'- q diagram, the phase transformation line moves closer to the failure line as the specimen's initial anistropical consolidation stress increases. Loose sands were more affected than dense sands. The increase of consolidation stress ratio from 1.4 to 1.8 had an effect on liquefaction resistance strength resulting from the increase of relativity density, and showed similar CSR values in dense specimen condition.

Modified Disturbed State Concept for Dynamic Behaviors of Fully Saturated Sands (포화사질토의 동적거동규명을 위한 수정 교란상태개념)

  • 최재순;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.107-114
    • /
    • 2003
  • There are many problems in the prediction of dynamic behaviors of saturated soils because undrained excess pore water pressure builds up and then the strain softening behavior is occurred simultaneously. A few analytical constitutive models based on the effective stress concept have been proposed but most models hardly predict the excess pore water pressure and strain softening behaviors correctly In this study, the disturbed state concept (DSC) model proposed by Dr, Desai was modified to predict the saturated soil behaviors under the dynamic loads. Also, back-prediction program was developed for verification of modified DSC model. Cyclic triaxial tests were carried out to determine DSC parameters and test result was compared with the result of back-prediction. Through this research, it is proved that the proposed model based on the modified disturbed state concept can predict the realistic soil dynamic characteristics such as stress degradation and strain softening behavior according to dynamic process of excess pore water pressure.

  • PDF

Correction for Membrane Penetration Effect during Isotropic Unloading and Undrained Cyclic Shear Process (등방제하과정과 반복전단과정에서의 멤브레인 관입량 및 보정식에 대한 실험적 고찰)

  • Kwon, Youngcheul;Bae, Wooseok;Oh, Sewook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.201-207
    • /
    • 2006
  • Soil tests are generally conducted using a membrane to measure a pore water pressure. However, it has also been recognized that the membrane penetrates into the specimen by the change of the confining pressure, and it results in the erroneous measurement in the pore water pressure and the volumetric strain. This study examined the effectiveness of the correction equation of the membrane penetration on the basis of the experimental data acquired during the isotropic unloading and the cyclic shear process using the hollow cylindrical shear test equipment. The results showed that the membrane penetration by the correction equation could be overestimated when the mean effective stress was lower than 20kPa in this study. The limitations originated from the sudden increase near the zero effective stress, and in order to prevent the overestimation in low effective stress condition, the use of the constant a was proposed in this study. Furthermore, the correction equation for the membrane penetration had to be applied carefully when the initial relative density was high and the density changes were occurred by the relocation of the soil particle by the liquefaction.

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.