• Title/Summary/Keyword: underwater environment

Search Result 571, Processing Time 0.036 seconds

Technology Development Trends Analysis and Development Plan of Unmanned Underwater Vehicle (무인 잠수정 연구 개발 동향 분석 및 발전 방안)

  • Lee, Ji Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.233-239
    • /
    • 2019
  • An unmanned underwater vehicle is a major weapon system that allows surveillance and reconnaissance missions in border areas or threatening areas where enemy submarines are present. Unmanned underwater vehicles can be used to explore underwater resources, predict disasters, and survey the topography of the ocean floor in the civilian fields, while in the defense fields, it can be used for anti-submarine reconnaissance and mine countermeasures. In this paper, we first investigate the main classification of unmanned underwater vehicles, and foreign R&D trends are analyzed based on the main classification criteria by weight, such as portable, light, heavy and large-scale unmanned underwater vehicles. Then we examine the trends in the development of domestic unmanned underwater vehicles. Finally, through the analysis of both domestic and foreign unmanned underwater vehicles, we present future development trends of unmanned underwater vehicles in order to set defense goals to counter the anticipated threats and diversified potential environment.

Estimation of Time Difference Using Cross-Correlation in Underwater Environment (수중 환경에서 상호상관을 이용한 시간차이 추정)

  • Lee, Young-Pil;Moon, Yong Seon;Ko, Nak Yong;Choi, Hyun-Taek;Lee, Jeong-Gu;Bae, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.2
    • /
    • pp.155-160
    • /
    • 2016
  • Recently, underwater acoustic communication (UWAC) has been studied by many scholars and researchers. In order to use UWAC, we need to estimate time difference between the two signals in underwater environment. Typically, there are major three methods to estimate the time-difference between the two signals such as estimating the arrival time of the first non-background segment and calculate the temporal difference, calculating the cross-correlation between the two signal to infer the time-lagged, and estimating the phase delay to infer the time difference. In this paper, we present calculating the cross-correlation between the two signals to infer the time-lagged to apply UWAC. We also present the experimental result of estimating the arrival time by using cross-correlation. We get EXCORR = 0.003055 second as the estimation error in mean absolute difference.

Medium Access Control Using Channel Reservation Scheme in Underwater Acoustic Sensor Networks (해양센서네트워크에서 채널예약방식을 이용한 매체접근제어)

  • Jang, Kil-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.955-963
    • /
    • 2009
  • In this paper, we propose a medium access control(MAC) protocol for reducing the energy efficiency and for improving the transmission efficiency in underwater acoustic sensor networks. In underwater environment, the transmission delay is longer and bandwidth is smaller than terrestrial environment. Considering these points, we propose a new MAC protocol to enhance throughput and to manage efficiently the energy of nodes. The proposed protocol operates as a channel reservation scheme to decrease data collisions, and uses a mechanism to control the hidden node problem and the exposed node problem occurred in ad hoc networks. The proposed protocol consists of the slotted based transmission frame and reduces data collisions between nodes by putting separately the reservation period in the transmission frame. In addition, it is able to solve the hidden node problem and the exposed node problem by reservation information between nodes. We carry out the simulation to evaluate the proposed protocol in terms of the average energy consumption, the ratio of collision, throughput, and the average transmission delay, and compare the proposed protocol to a traditional MAC protocol in the underwater environment. The simulation results show that the proposed protocol outperforms the traditional protocol under a various of network parameters.

Underwater transient signal detection based on CFAR Power-Law using Doubel-Density Discerte Wavelet Transform coefficient (Double-Density 이산 웨이블렛 변환의 계수를 이용한 CFAR Power-Law기반의 수중 천이 신호 탐지)

  • Jung, Seung-Taek;Cha, Dae-Hyun;Lim, Tae-Gyun;Kim, Jong-Hoon;Hwang, Chan-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.175-179
    • /
    • 2007
  • To existing method which uses energy variation and spectrum deviation to detect the underwater transient signal is useful to detect white noise environment, but it is not useful to do colored noise environment. To improve capacity of detecting the underwater transient signal both in white noise environment and colored noise environment, this study takes advantage of Double Density Discrete Wavelet Transform and CFAR Power-Law.

  • PDF

The Underwater Environment Monitoring System based on Ocean Oriented WSN(Wireless Sensor Network) (해양 적응형 무선센서네트워크 기반의 수중 환경 모니터링 시스템)

  • Yun, Nam-Yeol;NamGung, Jung-Il;Park, Hyun-Moon;Park, Su-Hyeon;Kim, Chang-Hwa
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.1
    • /
    • pp.122-132
    • /
    • 2010
  • The analysis of ocean environment offers us essential information for ocean exploration. But ocean environment has a lot of environmental variables such as the movements of nodes by an ocean current, corrosion by salt water, attenuation of radio wave, occurrences of multi-path and difficulty of sensor nodes' deployment. It is accordingly difficult and complex to gather and process the environmental information through ocean data communication due to these constraints of ocean environment unlike the terrestrial wireless networks. To overcome these problems, we organized ocean communication network for monitoring underwater environment by real experiment in Gyeongpoho similar to ocean environment. Therefore, this paper aims at overcoming major obstacles in ocean environment, effectively deploying sensor nodes for ocean environment monitoring and defining an efficient structure suitable for communication environment by the implementation of ocean environment monitoring system in Gyeongpoho.

On-Site Conservation of the Underwater Objects Excavated (해저 발굴유물의 현장 보존처리)

  • Moon, Whan-Suk;Kim, Byung-Keun;Yang, Soon-Seok
    • 보존과학연구
    • /
    • s.25
    • /
    • pp.133-150
    • /
    • 2004
  • Once the object has been excavated at underwater condition, it should be subjected to condition that may cause its deterioration. Therefore, it is important that the object immediately keeps stable environment. It means that the object was excavated at underwater and it exposed the deterioration condition, as soon as possible it was not dried on surface, especially metallic and organic material. Iron objects is particularly notorious for rapid disintegration that it kept wet or stored in a stable environment. Ceramics, glass and stone were handled carefully that it prevented physical damage by mishandling. Organic materials of wood, leather, rope, bone must not be allowed to dry out because the creaking, shrinking and warping are well known disintegration. Therefore objects is basis of keeping stable condition in on-site and then it will have to pass through a detailed conservation process in the laboratory.

  • PDF

Variation of Underwater Ambient Noise Observed at IORS Station as a Pilot Study

  • Kim, Bong-Chae;Choi, Bok-Kyoung
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.175-179
    • /
    • 2006
  • The Ieodo Ocean Research Station(IORS) is an integrated meteorological and oceanographic observation base which was constructed on the Ieodo underwater rock located at a distance of about 150 km to the south-west of the Mara-do, the southernmost island in Korea. The underwater ambient noise level observed at the IORS was similar to the results of the shallow water surrounding the Korean Peninsula (Choi et al. 2003) and was higher than that of deep ocean (Wenz 1962). The wind dependence of ambient noise was dominant at frequencies of a few kHz. The surface current dependence of ambient noise showed good correlation with the ambient noise in the frequency of 10 kHz. Especially, the shrimp sound was estimated through investigations of waveform and spectrum and its main acoustic energy was about 40 dB larger than ambient noise level at 5 kHz.

Performance Enhancement of Auto-Depth Control System for Submersed Body in Near Surface Environment (자유표면에서의 수중함 심도제어 시스템 성능 개선)

  • 이석필;윤형식;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.637-641
    • /
    • 1991
  • One of the most difficult problems in depth control for underwater vehicle is the effect of seaway disturbance. When a underwater vehicle operates in a near surface environment, the seaway generates essentially two types of stochastic disturbances that influence the boat notion. One component of the seaway forces is of large magnitude with a relatively narrow-band, first order component. The other component is generally of somewhat smaller magnitude, second order component. Since the magnitude of the first order component is generally such greater than the compensating force that can be generating by the planes, it is undesirable for the controller to generate a control command. In this paper, we used LPC(Linear Predictive Coding) processing to uncontrollable seaway disturbance. This method can be used extensively in sensor signal processing of underwater vehicles.

  • PDF

Association Algorithm for the Distributed Passive Linear Arrays and the Radar (분산 선배열 소나와 레이다를 이용한 표적 연관 기법)

  • Kim Jin-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.1 s.20
    • /
    • pp.25-31
    • /
    • 2005
  • PLA(Passive Linear Array) system has been primarily utilized to detect and track underwater targets, such as submarines. This system has difficulty in distinguishing between underwater targets and surface ships in a dense target environment. And a single-PLA system does not provide target state observability. At least two PLAs are necessary to observe a track uniquely. To classify and localize the underwater targets effectively, first of all, it is very of importance to discriminate the surface ships in the multi-target environment. These problems can be overcome by the association of distributed PLAs and radars. In this paper, we present an algorithm to solve the track-to-track association of the heterogeneous data from three PLAs and one radar are noncollocated with known sensor positions. Also, this paper shows the simulation results to verify the proposed algorithm.