• 제목/요약/키워드: underground temperature

검색결과 616건 처리시간 0.025초

생물개스 발생시스템을 위한 지하매설콘크리트 다이제스터의 열전달에 관한 연구 (Study on the Heat Transfer Phenomenon around Underground Concrete Digesters for Bigas Production Systems)

  • 김윤기;고재균
    • 한국농공학회지
    • /
    • 제22권1호
    • /
    • pp.53-66
    • /
    • 1980
  • The research work is concerned with the analytical and experimental studies on the heat transfer phenomenon around the underground concrete digester used for biogas production Systems. A mathematical and computational method was developed to estimate heat losses from underground cylindrical concrete digester used for biogas production systems. To test its feasibility and to evaluate thermal parameters of materials related, the method was applied to six physical model digesters. The cylindrical concrete digester was taken as a physical model, to which the model,atical model of heat balance can be applied. The mathematical model was transformed by means of finite element method and used to analyze temperature distribution with respect to several boundary conditions and design parameters. The design parameters of experimental digesters were selected as; three different sizes 40cm by 80cm, 80cm by 160cm and l00cm by 200cm in diameter and height; two different levels of insulation materials-plain concrete and vermiculite mixing in concrete; and two different types of installation-underground and half-exposed. In order to carry out a particular aim of this study, the liquid within the digester was substituted by water, and its temperature was controlled in five levels-35。 C, 30。 C, 25。 C, 20。C and 15。C; and the ambient air temperature and ground temperature were checked out of the system under natural winter climate conditions. The following results were drawn from the study. 1.The analytical method, by which the estimated values of temperature distribution around a cylindrical digester were obtained, was able to be generally accepted from the comparison of the estimated values with the measured. However, the difference between the estimated and measured temperature had a trend to be considerably increased when the ambient temperature was relatively low. This was mainly related variations of input parameters including the thermal conductivity of soil, applied to the numerical analysis. Consequently, the improvement of these input data for the simulated operation of the numerical analysis is expected as an approach to obtain better refined estimation. 2.The difference between estimated and measured heat losses was shown to have the similar trend to that of temperature distribution discussed above. 3.It was found that a map of isothermal lines drawn from the estimated temperature distribution was very useful for a general observation of the direction and rate of heat transfer within the boundary. From this analysis, it was interpreted that most of heat losses is passed through the triangular section bounded within 45 degrees toward the wall at the bottom edge of the digesten Therefore, any effective insulation should be considered within this region. 4.It was verified by experiment that heat loss per unit volume of liquid was reduced as the size of the digester became larger For instance, at the liquid temperature of 35˚ C, the heat loss per unit volume from the 0. 1m$^3$ digester was 1, 050 Kcal/hr m$^3$, while at for 1. 57m$^3$ digester was 150 Kcal/hr m$^3$. 5.In the light of insulation, the vermiculite concrete was consistently shown to be superior to the plain concrete. At the liquid temperature ranging from 15。 C to 350 C, the reduction of heat loss was ranged from 5% to 25% for the half-exposed digester, while from 10% to 28% for the fully underground digester. 6.In the comparison of heat loss between the half-exposed and underground digesters, the heat loss from the former was fr6m 1,6 to 2, 6 times as much as that from the latter. This leads to the evidence that the underground digester takes advantage of heat conservation during winter.

  • PDF

스트레인 게이지를 이용한 암석의 열팽창계수 측정 (Measurement of Thermal Expansion Coefficient of Rock using Strain Gauge)

  • 박찬;김형목;신중호;박연준;천대성
    • 터널과지하공간
    • /
    • 제17권6호
    • /
    • pp.475-483
    • /
    • 2007
  • 에너지원으로서 LNG 수요뿐 아니라 온실가스인 이산화탄소의 처분에 대한 필요성이 점차 증가되고 있어, 이를 위한 많은 저장시설이 요구된다. 이러한 저장시설은 안전성과 국토의 효율적 이용 등으로 인하여 지하화하는 경향이 있다. 이와 같은 온도특성을 고려해야하는 물질에 대한 지하저장시설의 건설에 있어서, 암석의 열물성은 열역학적 특성과 함께 저장시설의 설계 및 유지관리를 위한 중요한 요소이다. 본 연구에서는 암석입자의 크기와 실험온도범위를 고려하여 스트레인 게이지를 이용하여 암석의 열팽창계수를 실험적으로 측정하였다. 실험결과 열팽창계수는 온도가 내려감에 따라 감소하였으며, 국내 대표암석인 화강암에 대한 선열팽창계수의 온도관계식을 제안할 수 있었다. 본 연구에서 수행된 온도변화에 따른 시험결과는 지하저장소의 열역학적 안정성 해석과 열전파 특성을 규명하기 위한 해석에 주요 자료로 활용될 수 있을 것이다.

암석의 강도 및 변형거동의 온도의존성에 관한 연구 (A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks)

  • 이형원;이정인
    • 터널과지하공간
    • /
    • 제6권2호
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

지중 배전계통 적용을 위한 광복합 케이블 실시간 감시시스템 개선 (An Improvement of Optical Fiber Composite Power Cable On-Line Monitoring System for Underground Distribution Network)

  • 조진태;김주용;이학주;박중성
    • 조명전기설비학회논문지
    • /
    • 제26권7호
    • /
    • pp.77-83
    • /
    • 2012
  • Since power system is switching to smart grid, on-line monitoring technology has become necessary for underground distribution power cable. Therefore, the application of DTS(Distributed Temperature Sensing) technology using OFCPC(Optical Fiber Composite Power Cable) capable of monitoring underground distribution power cables has been developed. These can bring about reductions in faults and increases in operating capacity of underground distribution system. To date, the test-bed of optical fiber composite power cable on-line monitoring system has been constructed. Then, matters to be improved have been drawn through verification experiments. This paper presents the improvement and experiment results of the optical fiber composite power cable on-line monitoring system to apply to underground distribution lines in the field.

전철 누설전류가 지하매설 배관엘 미치는 영향 해석 (Analysis of DC Traction Stray Current Influences on Buried Pipelines)

  • 이현구;하태현;배정효;하윤철;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1273-1275
    • /
    • 2003
  • Corrosion of metallic structures arises when an electric current flows from the metal into the electrolyte such as soil and water. The potential difference across the metal-electrolyte interface, the driving force for the corrosion current, can emerge due to a variety of temperature, pH, humidity etc.. In this paper we analyze P/S potential and axial current of the pipeline with CP systems using BEM and DC traction stray current influences on buried pipelines.

  • PDF

유비쿼터스를 이용한 지하수 오염과 고갈방지를 위한 펌핑시스템의 원격제어 (Remote Control of Pumping System for Underground Water Pollution and Running Dry Prevention Using Ubiquitous)

  • 탁한호
    • 한국산업정보학회논문지
    • /
    • 제18권3호
    • /
    • pp.9-15
    • /
    • 2013
  • 본 논문은 온실하우스 시설내의 지하수 오염방지를 위한 유비쿼터스를 이용한 펌핑 시스템의 원격제어기 개발에 있다. 본 연구에서는 수막재배에서 펌프 살수에 대한 온도와 습도를 자동으로 제어한다. 이는 지하수의 무분별한 개발을 방지하고, 또한, 물 부족인 폐공의 경우 보완조치를 못하여 환경오염의 피해가 발생하는 것을 방지할 수 있다. 연구 결과, 최적의 농작물 관리와 펌프 제어를 통해 무분별한 지하수 사용과 고갈을 막고 전기료 절감 등의 장점을 확인하였다.

Balancing Well 교차혼합 지중열교환기의 스마트 냉난방 히트펌프 시스템의 성능평가에 관한 연구 (Study on the Performance Evaluation of Smart Heating and Cooling Heat Pump System in a Balancing Well Cross-Conditioned Ground Heat Exchanger)

  • 이창희;김동규;유병석;김부일
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a single hole operation method using a balancing well-cross-mixed underground heat exchanger, and conducted thermal performance studies of an SCW-type underground heat exchanger using a two-well. The study attempted to change the existing operating method of the two adjacent SCW underground heat exchangers with one ball each. The SCW-type geothermal heat exchanger is considered to enable up to 20% of bleed discharge at maximum load, which makes groundwater usage unequal. The efficiency factor of the geothermal system was improved by constructing the discharged water by cross-mixing two balancing wells to prevent the discharge of groundwater sources and keep the temperature of the underground heat exchanger constant. As a result of the cooling and heating operation with the existing SCW heat exchange system and the balancing well-cross-mixed heat exchange system, the measured performance coefficient improved by 23% and 12% in cooling and heating operations, respectively. In addition, when operating with a balanced cross-mixing heat exchange system, it has been confirmed that the initial basement temperature is constant with a standard deviation of 0.08 to 0.12℃.

곤지암 지하암반 저장고 온도계측 결과 분석 (Analysis of In-situ Temperature Measurement at Gonjiam Cold Storage Cavern)

  • 이규상;이정인
    • 터널과지하공간
    • /
    • 제15권3호
    • /
    • pp.169-176
    • /
    • 2005
  • 경기도 광주군에 건설된 상업적 규모의 지하암반 저장고인 '곤지암 지하암반 저장고' 에 대한 약 7년간 운영중에 측정된 결과를 분석하였다. 운영 초기 에 투입되었던 에너지와 저장고 주변의 온도가 안정화된 이후의 에너지를 비교하여 에너지 소비의 변화경향을 분석하였다. 초기 냉동기 설계에 필요한 용량과 저장고 운영에 필요한 냉동기 용량을 비교하여 초기 냉동시스템 설계 시 고려할 점에 대해 논하였다. 7년간 암반 내 지중온도 변화 양상을 분석하여, 암반 내 지하수가 동결될 때에 소요되는 추가적인 에너지에 대해 논하고, 현재 암반온도 분포 상황을 초기의 온도분포를 예측한 FLAC 수치해석 결과와 비교하였다. 냉동기 가동시간에 따른 투입된 열유량과, 2차원, 3차원 수치해석에 의한 열유량을 비교하여 수치해석에 의한 열유량 예측의 정확성에 대해 논하였다.

지중공간(地中空間)의 자연실온(自然室溫) 추정(推定)에 관(關)한 연구(硏究) (A Study on the Estimations of the Indoor Natural Temperature in the Underground Space)

  • 이시웅;손장열
    • 대한설비공학회지:설비저널
    • /
    • 제17권3호
    • /
    • pp.249-256
    • /
    • 1988
  • The purpose of this paper is to research the estimations of the indoor natural temperature in a case of the earth sheltered space and the 1st basement room in comparison with a conventional housing. The result of this study can be summerized as follows: The natural temperature of the earth sheltered house Summer : $${\theta}es=27.0+1.65sin(2{\pi}/24{\cdot}T-1.34)$$ Winter : $${\theta}ew=11.5+1.15sin(2{\pi}/24{\cdot}T-1.61)$$ The natural temperature of the 1st basement space Summer : $${\theta}us=25.5+1.00sin(2{\pi}/24{\cdot}T-1.72)$$ Winter : $${\theta}uw=13.9+1.10sin(2{\pi}/24{\cdot}T-2.29)$$ From the results of the stated above, we can calculate the cooling and heating load in the earth sheltered house and the underground space exactly and easily at Taejeon City.

  • PDF

지열을 이용한 외기부하저감시스템의 외기온도와 출구온도의 상관관계 분석 (A Study on the Correlation between Outdoor Air and Outlet Air Temperature in a Fresh Air Load Reduction System by Using Geothermal Energy)

  • 손원득;박경순
    • 설비공학논문집
    • /
    • 제22권9호
    • /
    • pp.620-627
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we investigated the correlation between outdoor air temperature and outlet air temperature in the system. In conclusion, from the results of the high correlation we proposed a equation of regression for the outlet air temperature in the system by using linear regression analysis.