• Title/Summary/Keyword: unconfined

Search Result 738, Processing Time 0.021 seconds

Bearing Capacity Evaluation of Marine Clay Dredged Deposit Including Desiccated Crust Layer (건조 고결층이 형성된 준설 매립 지반의 지지력 산정에 대한 연구)

  • Park, Hyun-Ku;Byeon, Wi-Yong;Jee, Sung-Hyun;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.89-100
    • /
    • 2007
  • In this study, various field and laboratory tests were performed to investigate the characteristics of shear strength and bearing behavior to be considered in the estimation of stability and trafficability in early stage of stabilization process in marine clay dredged deposit. Site characterization was carried out to grasp the basic properties of the deposit. Field vane test, unconfined compression test and direct shear test were conducted to evaluate the shear strength distribution for varied depths, and the characteristics of shear strength and stress-strain behavior of the crust layer. Plate load tests were also performed to estimate the bearing capacity and to assess load-settlement behavior and failure pattern of the deposit. The bearing capacity was also estimated using previously proposed methods for double-layered clay deposit. The estimated bearing capacity was compared with the results of the plate load tests and then, the applicability of the estimation method was discussed.

Estimation of Compressive Strength for Cemented River Sand (고결된 하상모래의 압축강도 추정)

  • Jeong, Woo-Seob;Yoon, Gil-Lim;Kim, Byung-Tak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.67-78
    • /
    • 2008
  • In this study, artificial cemented sand made of a few portland cement and Nak-Dong river sand was researched closely to investigate cementing effect quantitatively through unconfined tests and triaxial tests. The peak strength and elastic modulus increased and dilation of cemented sand was restricted by the cementation, but after breakage of the cementation, dilation and negative excess pore water pressure increased. In stress-strain curve, strain-softening behavior appeared in drained condition but strain-hardening behavior was appeared in undrained condition as a result of the increase of effective stress. The test was quantitatively analyzed by multiple regression models, correlating each response variable with input variable. The equations are valid only over the range investigated. Its adjusted coefficient of determination was $0.81{\sim}0.91$, and dry density is important factor for estimating strength of cemented sand.

Development of inorganic thixotropic-grout for backfilling of shield TBM tail voids and its compatibility (쉴드 TBM 뒤채움용 무기계 가소성 그라우트의 개발 및 적합성 평가)

  • Kim, Dae-Hyun;Jung, Du-Hwoe;Jeong, Gyeong-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.277-286
    • /
    • 2009
  • A suitability of a thixotropic grout developed in this study has been examined through laboratory tests on strength, segregation, and viscosity. The thixotropic grout is a mixture of two types of liquid components. The A-liquid component consists of cement, water, and MG-A and the B-liquid component consists of scarlet, water, and MG-B. Unconfined compressive strength of specimens prepared with a prefer mix-proportion satisfied a design criteria for the backfilling of tail voids. A material segregation phenomenon under water condition was not observed in the thixotropic grout whereas it was observed in the existing silica-type grout. In addition, viscosity tests have been rallied out on the thixotropic grout to verify the capability of a long-distance delivery in the field. Both the A-liquid component and the B-liquid component maintained a viscosity of below 2,000 cP for 120 minutes. This experimental result confirms that two liquid components guarantees a long-distance delivery in tile field application.

Mechanical Characteristics of Accelerated Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착 잔토를 재활용한 지중전력구조물 뒷채움재의 역학적 특성)

  • Cheon, SeonHo;Jeong, Sangseom;Lee, DaeSoo;Kim, DaeHong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.303-312
    • /
    • 2006
  • This study is to evaluate the mechanical characteristics of flowable backfill and offer a guide line of mixture proportion based on soil types for constructing underground power utilities. Flowable backfill is known as soil-cement slurry, void fill, and controlled low-strength material(CLSM). The benefits of CLSM are reduced equipment costs, faster construction, re-excavation in the future, and the ability to place materials in confined spaces, which are narrow parts or perimeters of underground power cables nearly impossible for compaction. The flowable slurry mixed with 17 soils and 6 accelerated mixtures in the laboratory were evaluated for flowability and unconfined compressive strength to meet the target values of this study.

Stress-Strain Relations of Concrete According to the Confining Conditions (구속 조건에 따른 콘크리트 응력-변형률 관계)

  • Im, Seok Been;Han, Taek Hee;Han, Sang Yun;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.743-752
    • /
    • 2006
  • Confined concrete has enhanced strength and ductility compared with unconfined strength. Cause of these merits of confined concrete, many researches have been performed for confining effects of concrete and been studied in many fields. Although many researches about concrete confined by FRP sheets have been studied recently, it is difficult to apply concrete confined by FRP in real structures because FRP is a brittle material. In this study, the enhanced strength and ductility of concrete which is confined by steel tubes or steel plates were investigated. Fifty one specimens were tested and each specimen has different confining condition. Test results showed enhanced ductility and strength of confined concrete and concrete models were suggested under various confining conditions by regression of experimental data.

Compressive Behavior of Reinforced Nylon Fiber Slag-CB (나일론 섬유 보강 Slag-CB의 압축거동 특성)

  • Younkyoung Lee;Taeyeon Kim;Jongkyu Lee;Youngsoo Joo;Bongjik Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.5-10
    • /
    • 2023
  • Slag-CB is widely used in various fields that require groundwater control. It is a type of CB where a portion of the cement mixed with CB is replaced with GGBS. In general, Slag-CB has the advantage of long-term improvement in compressive strength, permeability, durability, and chemical resistance as the GGBS replacement ratio increases. However, there are problems such as decreased flexibility and resistance to deformation of the cut-off walls, as well as brittleness upon failure. To address these problems, some quality standards recommend designing Slag-CB with lower strength, which makes it challenging to apply high-strength Slag-CB with a high GGBS replacement ratio in the field.In this study, we aimed to improve the flexibility and resistance to deformation of Slag-CB to prevent brittle failure and improve the field applicability of Slag-CB. To achieve this, we evaluated the compressive behavior of nylon fiber-reinforced Slag-CB and proposed measures for enhancing the flexibility and resistance to deformation of Slag-CB.

Static and dynamic characteristics of silty sand treated with nano-silica and basalt fiber subjected to freeze-thaw cycles

  • Hamid Alizadeh Kakroudi;Meysam Bayat;Bahram Nadi
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.85-95
    • /
    • 2024
  • This study investigates the influence of nano-silica and basalt fiber content, curing duration, and freeze-thaw cycles on the static and dynamic properties of soil specimens. A comprehensive series of tests, including Unconfined Compressive Strength (UCS), static triaxial, and dynamic triaxial tests, were conducted. Additionally, scanning electron microscopy (SEM) analysis was employed to examine the microstructure of treated specimens. Results indicate that a combination of 1% fiber and 10% nano-silica yields optimal soil enhancement. The failure patterns of specimens varied significantly depending on the type of additive. Static triaxial tests revealed a notable reduction in the brittleness index (IB) with the inclusion of basalt fibers. Specimens containing 10% nano-silica and 1% fiber exhibited superior shear strength parameters and UCS. The highest cohesion and friction angle were obtained for treated specimens with 10% nano-silica and 1% fiber, 90 kPa and 37.8°, respectively. Furthermore, an increase in curing time led to a significant increase in UCS values for specimens containing nano-silica. Additionally, the addition of fiber resulted in a decrease in IB, while the addition of nano-silica led to an increase in IB. Increasing nano-silica content in stabilized specimens enhanced shear modulus while decreasing the damping ratio. Freeze-thaw cycles were found to decrease the cohesion of treated specimens based on the results of static triaxial tests. Specimens treated with 10% nano-silica and 1% fiber experienced a reduction in shear modulus and an increase in the damping ratio under freeze-thaw conditions. SEM analysis reveals dense microstructure in nano-silica stabilized specimens, enhanced adhesion of soil particles and fibers, and increased roughness on fiber surfaces.

The gene expression programming method for estimating compressive strength of rocks

  • Ibrahim Albaijan;Daria K. Voronkova;Laith R. Flaih;Meshel Q. Alkahtani;Arsalan Mahmoodzadeh;Hawkar Hashim Ibrahim;Adil Hussein Mohammed
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.465-474
    • /
    • 2024
  • Uniaxial compressive strength (UCS) is a critical geomechanical parameter that plays a significant role in the evaluation of rocks. The practice of indirectly estimating said characteristics is widespread due to the challenges associated with obtaining high-quality core samples. The primary aim of this study is to investigate the feasibility of utilizing the gene expression programming (GEP) technique for the purpose of forecasting the UCS for various rock categories, including Schist, Granite, Claystone, Travertine, Sandstone, Slate, Limestone, Marl, and Dolomite, which were sourced from a wide range of quarry sites. The present study utilized a total of 170 datasets, comprising Schmidt hammer (SH), porosity (n), point load index (Is(50)), and P-wave velocity (Vp), as the effective parameters in the model to determine their impact on the UCS. The UCS parameter was computed through the utilization of the GEP model, resulting in the generation of an equation. Subsequently, the efficacy of the GEP model and the resultant equation were assessed using various statistical evaluation metrics to determine their predictive capabilities. The outcomes indicate the prospective capacity of the GEP model and the resultant equation in forecasting the unconfined compressive strength (UCS). The significance of this study lies in its ability to enable geotechnical engineers to make estimations of the UCS of rocks, without the requirement of conducting expensive and time-consuming experimental tests. In particular, a user-friendly program was developed based on the GEP model to enable rapid and very accurate calculation of rock's UCS, doing away with the necessity for costly and time-consuming laboratory experiments.

An experimental investigation on dispersion and geotechnical properties of dispersive clay soil stabilized with Metakaolin and Zeolite

  • Ahmadreza Soltanian;Amirali Zad;Maryam Yazdib;Amin Tohidic
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • Dispersion occurs when clay soil disperses under specific conditions and is rapidly washed away. While there are numerous methods for rectifying it, they are neither cost nor time-effective. The current study used metakaolin and zeolite to improve heavily dispersive clay soil either separately or in combination at 0%, 2%, 4%, 6%, and 8% of the soil weight. After 7 days of curing, the samples were tested to determine the extent of change in the dispersion potential, as well as the improvement of the geotechnical properties of the soil. The results indicated that the addition of 2% zeolite with 6% to 8% metakaolin decreased the dispersion potential considerably. Double hydrometry test findings revealed that the dispersion potential decreased by almost 70% and entered the non-dispersive group; the crumb test also revealed this. Atterberg limits testing indicated a decrease in the plasticity index which reduced the flexibility of the samples. The greatest decrease in PI (67.5%) was achieved with the addition of 8% zeolite plus 8% metakaolin to the soil. The results of density tests revealed that a decrease in the optimal moisture content increased the maximum dry density of soil. This increase in density was a response to the high reactivity of metakaolin with calcium hydroxide and the formation of calcium hydroxide hydrate gel. This eventually caused an increase in the unconfined compressive strength, the greatest increase in strength of about 1.8-fold was observed with a combination of 2% zeolite and 6% metakaolin compared to the unmodified sample.

Comparative research on expansive soil stabilization using ecofriendly materials versus nano-materials

  • Ali Hasan Hammadi Algabri;Seyed Alireza Zareei;Mohamed Jassam Mohamed Al Taee;Niloofar Salemi
    • Advances in nano research
    • /
    • v.17 no.2
    • /
    • pp.125-136
    • /
    • 2024
  • In the present research the durability and geotechnical properties of an expensive clayey soil stabilized by two different compositions of additives were investigated and compared. The first composition consisted of environmentally and ecofriendly materials: BOF steel slag ranging from 0-20% as well as rice husk ash (RHA) ranged 0-16%wt of dry soil. The other composition consisted of relatively new generation of materials including nanomaterials: nano-CaCO3 as well as nano-SiO2. Atterberg limits test, free swell percent test, swelling pressure test and unconfined compressive test were used to assess the stabilizers influences upon expansive soil geotechnical characteristics. Also, the recurrent wet-dry cycles test was exerted on experimental and non-experimental samples for estimating stabilizers effects on durability. According to the results, each of the BOF slag and RHA enhances the expansive soil properties individually, while combination of slag-RHA led to better improvement of the soil properties. Also, the composition of nano-CaCO3 and SiO2 dramatically improved the clay soil operation. The optimum values of slag+RHA were suggested as 20% slag+12% RHA to enhance percent of swelling, pressure of swelling in addition to UCS as much as 95%, 96%, and 370%, respectively. The optimum value for the second stabilizer in this study was found to be 2%nano-SiO2+2% nano-CaCO3 which led to 318% increase in UCS and 86% decrease in swelling pressure.